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Abstract

Effectiveness of using laser field to produce entanglement between two dipole-interacting identical two-
level atoms is considered in detail. The entanglement is achieved by driving the system with a care-
fully designed laser pulse transferring the system’s population to one of the maximally entangled Dicke
states in a way analogous to population inversion by a resonant sz-pulse in a two-level atom. It is
shown that for the optimally chosen pulse frequency, power and duration, the fidelity of generating a
maximally entangled state approaches unity as the distance between the atoms goes to zero.

With recent experimental advances in the methods for coherent manipulation of quantum
system on the level of individual particles, many of previously purely speculative problems
become surprisingly up-to-date. In particular, much activity of physicists from different
research fields is currently devoted to clarification of the entanglement concept [1], ways
for its quantification, purification, and creation. Casual creation of entangled states of atoms
by coherent manipulation with light currently poses one of the biggest challenges in the
field of quantum optics [2]. Conversely, the resonant dipole-dipole interaction (RDDI) and
cooperative relaxation effects associated with it are rather traditional topics of research.
Recently the RDDI has been investigated as a source of interference phenomena in emis-
sion spectra [3—5], super- and sub-radiance [6, 7], photon bunching [8], collisions in the
laser cooling processes [9, 10], and as a mechanism for realizing quantum logical gates [11,
12]). In this paper we address the question: how effectively can the RDDI along with
coherent laser pulses be used for creation of multi-atomic entangled states.

In our model two identical two-level atoms are located at a fixed distance R and can be
driven by laser beam that is either parallel or perpendicular (according to geometries identi-
fied, respectfully, as antisymmetric and symmetric, Fig. 1) to the radius vector R connecting
the atoms. Within the interaction picture and rotating wave approximation, the evolution is
described by the following master equation [5]:
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Fig. 1: Geometry of the model with shown directions of
laser beams for the symmetric and antisymmetric excita-
tion.
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where

Hest :g [—6(6§ + 6%) + Q6] + 2,65 +x0) 6, +hel. (2)
is the effective Hamiltonian describing the atoms’ self-evolution and interaction with the
laser field. Here 6 = w; — w, is the laser detuning from the atomic transition frequency,
£,, are the complex laser driving Rabi frequencies for each atom,
a7, 6!, 6%, 6F = 6F i), if 1,2, are (using the well-known analogy between two-level
atoms and spins) the sp1n—— Cartes1an component and transition operators of the i-th atom,
and we define g, f and y so that y,; =¥, =7, Y12 = V21 = &Y, X =fv. The distance
dependent parameters g and f, describing, respectfully, the photon exchange rate and cou-
pling due to the RDDI, are defined differently for different types of the atomic transition in
question. Defining p =0, g =2 for Am =0 and p =1, g = —1 for Am = &1 transitions
(with the quantization axis coinciding with R) and assuming that dipole matrix elements of
the atoms are collinear to each other and perpendicular to R, we have the following expressions

for g(¢) and f(¢) [13]:

3 sin @ sin @ cos @
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where @ = kR is the “dimensionless distance” between the atoms and k = w,/c. Through-
out the rest of the article we will consider Am = £1 case for determinacy as for the
Am = 0 case the results are qualitatively same.

It can easily be shown when excluding the laser driving that the Dicke states, |y,) = |e), |e),,
W) = 8 1) lws) = (18 [e) 1€} [8)y)e and  [w) = (Ig), ) — lel g),)
(where |e); and |g), are the upper and lower levels of the ith atom) are the eigenvectors of
‘Hesr, while the rest of the atomic dynamics can be described as radiative decay to/from the
antisymmetric |y,) state with the rate y_ = (1 — g)y and to/from the symmetric |y,) one
with the rate y, = (14 g)y.

Analytical stationary solutions of (1) can be found for the case of symmetric excitation
Q) = 2, = 2 (without loss of generality we can assume that €2 here is real and positive)
with the stationary populations of the Dicke states given by

94

Ne = Na == ’
(72 +40% +2Q°) 4+ y(y2 + 46%) (f2y + g2y + 28y — 4f0)

N 2072y +80° + %) @
L (24407 + 200 1 y(y2 +40%) (f2y + 2y + 297 — 4f0)

Ny=1—=N,—N, —N;.

Graph Ny(£,0), corresponding to ¢ = 0.5, is shown in Fig. 2a. The antisymmetric case,
when the laser beam is parallel to R, allows no such simple analytical solution since in this
case the relation between the Rabi frequencies for two atoms is more complex
Q) = €9Q, = Q (although £ here is again real and positive). However, the numerical
solution is easily obtained and the corresponding dependence N,(£2,0) is shown in Fig. 2b.
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Fig. 2: The stationary populations of the symmetric (a) and antisymmetric (b) Dicke states versus the
laser detuning ¢ and the laser driving Rabi frequency Q for ¢ = 0.5.

If we aim to transfer the maximum amount of population into one of the maximally
entangled states |¥,) or |¥,) by a short coherent pulse, a good criterion for finding opti-
mal values of the laser field parameters, € and O, is whether the population of the corre-
sponding level is close to 0.5 in the stationary solution. From the analysis of (4) and the
graphs in Fig. 2 we deduce that the optimal parameters can be well approximated by
Oopt = £x(®)/2 and Qo = /|x(@)| v+ with the upper/lower sign for the symmetric/anti-
symmetric geometries, respectfully. We then have [Oop| = [x|/2 > Qop > v, for suffi-
ciently small distances, so that the transition of interest is saturated while at the same time
the Rabi frequency is moderate enough to avoid broadband excitation of the Dicke level we
are not interested in.

Given the optimal parameters obtained in the previous section we proceed to find the
fidelity of creation of the maximally entangled states, that is the maximum amount of popu-
lation one can transfer using pulses of radiation. Considering the dynamics of the popula-
tions under optimal parameters laser driving that is turned on at the time instant t = 0
(when all of the population is in "I’g> state), we define the optimal pulse duration as the
time when the population of the state we are interested in, reaches its first maximum. For
the so chosen parameters we plot in Fig. 3a the populations achieved by applying the
optimal pulse, as a function of interatomic distance ¢. The populations approach unity for
both geometries as ¢ goes to zero suggesting that almost perfect transfer of population is
attainable at small interatomic distances.
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Fig. 3: a) The fidelity of creation of the maximally entangled states (by applying the optimal pulse as
described in text) versus interatomic distance ¢. b) The Lh.s. of the Bell inequality (5) versus ¢. The
pure states limit is 0.75, uncorrelated states lead to 1.5, the classical boundary is 1.0. Solid and dashed
lines correspond to the antisymmetric and symmetric cases, respectfully.
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It is easy to explain this result. As R goes to zero the energy splitting between the
symmetric and antisymmetric state, equal to 2y = 2fy, grows to infinity (of course, within
the evident limitations of negligibility of exchange effects [5]). The “parasitic” excitation of
the levels we are not interested in is then avoided by shifting the laser frequency so that we
are in resonance only with one of the excited Dicke states. And if we have in possession
arbitrarily strong and arbitrarily tunable laser, as ¢ goes to zero we can produce shorter and
shorter pulses thereby decreasing the decay probability during the pulse.

In addition, in the case of the symmetric excitation laser driving matrix element for the
transitions involving the antisymmetric state vanishes. This means that its population can
only come from decay of the upper |¥,) level. In fact, in the stationary solution (4) the
two states even have the same populations, which are negligible for large detunings. In the
antisymmetric excitation case, however, the situation works against us. As the interatomic
distance goes to zero the Rabi frequencies of the two atoms become closer in phase, dimin-
ishing along the way the matrix elements of transitions involving antisymmetric state to
zero. But even with such a small value of excitation efficiency, we can still manage to
transfer the population to the antisymmetric state because the symmetric excitation remains
far off resonance, and get as a reward the increased lifetime 7= 1/((1 — g(R)) y) > 1/y
of our maximally entangled state (using this “durability” of the antisymmetric |¥,) state,
we can also create some entanglement passively as described in [14], but it is difficult to
obtain a high fidelity that way).

Now, instead of calculating different entanglement measures [15] (and then figuring out
which of them better suits our purposes), we will consider how much our created states
violate a simple Bell inequality. It can be easily shown [1] that for any classical local
variable distribution the probabilities of finding the atoms’ “spins” aligned along 77, direc-
tion after coherent rotations fulfill the following Bell inequality:

Pdiff(o, 2.71'/3) + Pdiff(2.7t/3, —2.7'[/3) + Pdiff(07 —2.7Z/3) >1, (5)

where the Pgirr(¢,,@,) is the probability of getting different results of the measurements of
the two spins, i.e., of finding one spin aligned along the 77, direction and the second one
against it after the first spin is rotated by ¢, and the second one by ¢, around OX or OY
axis. In quantum mechanics, however, the left hand side of (5) amounts to only 0.75 for the
pure maximally entangled |¥,) state. To apply the same Bell inequality (5) to the case of
the symmetric excitation geometry we first perform a 180° rotation along 7i;-axis with one
of the atoms (thus turning |¥;) state into |¥,) one) and then perform the measurement as
described above. In Fig. 3b the l.h.s. of (5) is plotted against the dimensionless distance ¢
showing that for ¢ less than =~ 0.5 we have the violation of the inequality and as ¢ — 0
we recover the pure states limit of 0.75.

In summary, while being admittedly unrealistic, our model offers a few insights into how
efficiently the RDDI can be used to entangle atoms or implement quantum logic gates [12,
16]. We have shown that considerable fidelities (up to 0.8) of creation of one of the maxi-
mally entangled Dicke states and Bell inequality violations can be realized if the atoms are
placed within distances of the order of a tenth of a wavelength of the working transition.
Such distances can be achieved, for example, in the ground vibrational states of two atoms
in optical lattices [10, 12, 17].

However, all of the practical applications (say, quantum teleportation [18]) require stable
entanglement. Even the Bell inequalities violation considered above can be verified only if
the produced entanglement lives sufficiently long so that the atoms can be spatially sepa-
rated for individual addressing and photodetection (imperfectness of the detectors constitu-
tes another problem that has not yet been addressed). Of course, this cannot be achieved in
our model, since the dipole interaction and the decay have the same physical nature and we
cannot avoid the latter while making use of the former.
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Relatively stable coherences (with lifetimes of the order of seconds) can be generated if
we use the Zeeman sublevels of the atoms as the working levels (qubits). The RDDI is
negligible for them, but using three-level atoms in /-configuration instead of two-level
atoms we can overcome that difficulty. We can use Raman pulses transferring the popula-
tion between the Zeeman sublevels via a higher lying “transit” Dicke level (STIRAP tech-
niques [19] might be an alternative), so that the transitions between each of the Zeeman
sublevels states and the excited ‘“‘transit” state benefit from substantial RDDI. Then by
choosing one-photon detunings to be in resonance with only one of the higher level Dicke
states we can generate the Zeeman sublevels entanglement.

In this paper we present the first tentative quantitative model of the process of entangle-
ment of atoms with the help of the RDDI. Much remains to be done before we can com-
pare the results of the theory with possible practical implementations, but the conclusions
presented here are promising and therefore encourage further theoretical developments.

This work was partially supported by Volkswagen Stiftung (grant No. 1/72944) and the Russian Minis-
try of Science and Technical Policy.
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