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Abstract: We clarify the microscopic structure of the entangling
guantum measurement superoperators and examine their possi- A B A B
ble physical realization in a simple three-qubit model, which im-
plements the entangling quantum measurement with an arbitrary
degree of entanglement.

Unitary transformationUg for partial entanglement of two
qubits, where{|0),|0)}, {|1),|1)}, and {|2),]2)} designate
three orthogonal bases #fip arbitrary rotated to each other
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1. Introduction transformed operator, which is simply the density matri-
ces in our case [4,5]; indéxenumerates the eigen vectors

In quantum information theory, generalized description ofof the measured physical variable, which is described by
most important quantum transformations, which extendthe operatorA = 3" Ax|k) (k| in the Hilbert spaced 4 of
the class of unitary transformations lying in the founda- the measured object. The generalized measurement, which
tions of quantum theory of dynamically closed quantumis carried out in the extended spaHe, ® H, of the ini-
systems [1], plays very important role [2]. Particulary, the tial and auxiliary systems, is described by the PSM of
resulting transformation in a system describing only thethe general forne, = F, © EF in the linear space of
measured object to which we apply the standard quantungperators inH 4. The corresponding classical probabilis-
measurement can be written in a form of so called projec+jc measure on the spectrum of physically possible values
tive measurement superoperator: A of the operatotd is described by the linear functional

. pa — P(k) = Tr Expa, which is determined by a non-
Mp = Z k) (k| © [k) kT (1) orthogon(al)expansion of the unit operator [6]
where thek-terms of the sum describe the normalized pos- .. N R R
itive superoperator measure (PSM), which is represented’s = Fy Fr, > Er =1,
here by the orthogonal projection superoperators of the

form which is the positive operator valued measure (POVM) [7].
Due to the progress in quantum state engineering made
Ek = [k) (k| © [k){k], ZTr Er=Tro. over last decades [8], the commonly accepted concept of

. . guantum measurement as a projective transformation has
Respectivelyy" &1 = 3" |k) (k| = I (see, for instance, been essentially revised. It includes now various types
[3]). The substitution symbab is to be substituted by a of measurements, e.g., the measurement that provides the
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measured information in a form of quantum entanglementinformation, which is bound to the entangling quantum
between the apparatus and the measured object. By comeasurement. Unitary implementations of the extended
trast with the classical theory, the equaldy= B, which superoperators in connection with the experimental speci-
means the coincidence of the physical valdeand B for ficity of physical implementations of non-reversal trans-
all their possible values, can be realized now differently. formations are considered in Sec. 3. In Sec. 4 we con-
This equality does not prevent arbitrary relations betweersider specific matrix representations in application to the
the phaseg, corresponding to the eigen wave-functions extended superoperators technique. In Sec. 5 we specify a
¥, implementing the equalitt = B = . Therefore, the unitary realization of the entangling measurement in a sim-
standard quantum measurement implies complete absengde three-qubit model, which implements the entangling
of the phase correlations, whereas the completely coheremuantum measurement with an arbitrary degree of entan-
measurement implies the defined set of phases. glement.

The respective most general abridged notation for the
ideal quantum measurement transformation in the object—
apparatus system is given by thietanglingguantum mea- 2. Mathematical definitions of extended
surement superoperator [5]. This entangling quantum meaSuperoperators
surement can be considered as a combination of the com-

pletely coherent measurement, which provides the meay, order to clarify physical implementation of the measure-

surement results in a form of quantum entanglement begent fransformations, its mathematical representation has
tween the apparatus and the object, and additional transg have a clear and simple form. Extended superoperators

formation dephasing the states of the apparatus perfectly fit this purpose and their definitions are consid-
D =" Ryli)il © 15) (] ered below in detail.
s Let us consider a superoperator transformasoin a

bipartite systemA + B, which we apply to the density
matrix pap = pa ® p% of this system in the Hilbert
spaceH 4 ® Hp, wherep? is an arbitrary chosen fixed

with the positive entanglement matrix > 0 with the di-
agonal element#;; = 1. The entangling quantum mea-

§durement IS an mtermedlat? trans_forrrlatmn bgtvyeen th%tate. Then, the result of this superoperator transformation
[ ‘en.tlty syperoperator transformatidn = >, [4)(i| © is simply a magC(H 1) — C(H 4 @ Hp) of the operators
17)(71, which corresponds to the case®f; = 1, and the 5 gebra infl , onto the corresponding algebrafify ® H
projective measurement transformation (1), which corre-3ng can be written in a symbolic representation as
sponds to the diagonal matrik;; = ;.

Definition of quantum measurement considered in€ = S(® ® p%), 2
Ref. [5] is based on the natural interpretation of the quan-

tum measurement as the transformation, which is invari-Where the subsitution symbal should be substituted by

ant with regard to the initial state of the apparatus. HOW_tsgrsl%ls(;tr:lgsfec;(r)meerda?(?fe;ggﬁg ﬁ%gft%w(;i?jt”vivr:tgr;hea?i(s_on
ever, in a wide range of experimental situations [8—11] berop P

the quantum measurement transformations are applied t}g”th the inputp, space with the elemengs; 5 = gpf"
a bipartite system when the initial state of one of the If the result of t_he superoperator transformation does
! o ; not depend orpY, i.e., & = & = S(® @ pp) for all
subsystems is explicitly known (it can be, for example, ; we have another special case, when the superoperator
1 B L]
the ground or specially prepared quantum state of a ansformationS can be described entirely with the ex-

atom or non-excited resonator mode). Both cases can bended superoperator (2). The corresponding structure of
described with the superoperators of a specialized type perop ' P 9

which instead of the complete mapping (object+appatratusfuch invariant superoperator has the form:
— (object+apparatus) define the mapping (objestjob- A Ny
jec§+ajpparatﬂz). It is) worth to notepﬁer% (thajlt foqr a po-S B Z(S"j QA) © (|Z> ([T GB)’ 3)
tentially capable experimental realization of the measure- "
ment transformations considering appropriate mathematwhere the trace operation makes the result independent of
ical representation of a specific physical situation is ofan initial state of the syster®.
prime importance. The extended superoperator (2) may be treated as a
In this work, we elucidate possibility of physical im- “hybrid” superoperator transformation over the variables
plementation of an entangling measurement. The genef the system4 and the density matrix operator over the
eral theory is illustrated on example of two-level models, variables of the systen. Respectively, tracing the ex-
which describe in an idealized form some features of quantended superoperator over the variables of the sy&tea
tum transformations that are typical, for instance, for thesults in a regular superoperat8s = Trz &, which maps
experiments with trapped atoms. algebraC(H 4) onto itself. The relatiolS4 — £ can be
In Sec. 2 we give precise mathematical definitions of considered as an extension of the value area of the super-
the extended superoperators and discuss how they can leperator, which is related to the concrete definition of the
applied to the various types of the ideal quantum measurerespective physical transformation in an open system in the
ment. Also, we give physical interpretation of the coherentsymbolic representation form (2).

(© 2004 by Astro Ltd.
Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA



Laser Physics
Laser Phys. Lett. (2004) / www.|phys.org Letters 3

Apparently, the extended superoperator (2) has the The extended superoperator for the entangling mea-
same specificity for all superoperators properties—thesurement can be additionally extended in a way to clar-
complete positivity and normalization. In case df ify the quantum nature of the entanglement matrix. This
dimensional Hilbert spaceld 4, Hg, the extended super- can be readily done by introducing additional internal de-
operator can be represented in the matrix representation byrees of freedom it/ , space that are responsible for the
the rectangular matrices dft x d2-dimension, whereas a dephasing effects, i.e., in the form of the extended super-
regular superoperatdt is described by rectangular matri- operatorA — (A+B+D) of the form:
ces ofd* x d*-dimension. In a specific case of two qubits,

these ara6 x 4 and16 x 16 matrices, respectively. Keep-  £xr = > [i)|i)[[d)) (il (1 (7 (i] © |3) , (8)

ing this in mind, one can essentially reduce complexity of ij

the respective calculations performing them in terms of the , ,

extended superoperators, when it is possible. where internal degrees of freedom are in the double brack-

With the help of an orthogonal bagis) in 4 the ex-  ©ts and, generally, are non-orthogonal and are described
tended superoperator (2) has the following, as one can eady the scalar product(i|j)) = R;;, which ensures co-

ily see, most generalized form: incidence with Eq. (6) after averaging over stategfip.
' Such representation of the extended superoperator clarifies
= Z k| ® |1) (4) physical essence of the dephasing processes as modulation

of the stategi)|i) Ha ® Hp by the internal statefi)),
wheres,, is the set of operators il 4 ® Hp, which sat- which define an additional quantum “phase” depending, in

isfy the above mentioned complete positivity and normal-9eneral, on. _ _
ization conditions. The states of the micro-variables of the apparatus are

From the properties of the extended superoperators igesc_ribed in accordance with Eq. (8) by the partial density
follows that more than one regular superoperator can corMatrices:
_respond to the extended one. Also, possibility of p_hysicaIﬁD — Zpi||i>><<i|\ 7 9)
implementation of the extended superoperatpmwhich 7
satisfies the complete positivity condition, readily follows - o )
from the general criterion of physical implementation of a Where probabilitiep; = (i[54li) are determined only by
regular superoperator [2] and it is enough to have only theh€ density matrix of the measuring object and by the eigen
existence proof of a complete positive superoperdtand ~ basis of the measuring physical variale= » °; ;i) (j|.

density matrixp%;, related tof according to the Eq. (2). In case of the standard non-coherent measurement it co-
Let us consider the entangling measurement superopncides (at a properly chosen basis set) with the reduced
erator: density matrix of the object
M =" Rl i) (| (G| (ml (i] © [3)m) (5)  frea =D |i)ilpali)il.
ijm i
with the entanglement matrikR;;) > 0,R; = 1 [5], In the opposite case of the completely coherent measure-

which is a particular case of the invariant superoperatofment,||i)) = [[0)), we havepp = [|0))((0|| and, respec-
(3). The resulted state after its action does not depend ofively, the microstates entropy equals to zero.

an initial state of the syster and with the help of (4) the In this connection, it is worth to note that the zero mi-
corresponding extended entangling measurement superogtostates entropy does not prevent manifestation of phys-
erator has the form: ically essential macroscopic fluctuations in the system.
Besides a subset of physical variables for whigh) is
Ev = Z(Rij|i>|z‘)<j|<j|)<i| o) - (6) the eigenstate, there is an “overwhelming majority” (this
ij qualitative characteristic can be readily concretized math-

] ) ematically) of other variables that results in quantum fluc-
Here, the resulted staje, s is represented only via the tyations, of perfectly macroscopic character inclusive. It
cloned basis statgs)|i), which means that the quantum s clear, in principle, that any quantum state of a macro-
measurement was an ideal one. Also, afactihat~ 1at  object can be considered as a pure state at the microscopic
i # j is an evidence that the measurement is an incoherengye| in the frame of sufficiently complete microscopic

one. Even in the case of complete cohererity, = 1,  model, which includes all physical subsystems the object
when the entangling superoperator (5) descritlesing  interacts with.

transformatiorof the basis states, The coherent information [12] or preserved entangle-
ment [13, 14]
C =" |i)) Gl (ml(i] © [5)m) (7
ijm I. = S[ps] — S[pas]

it is non-reversabecause information of an initial state of corresponding to the entangling measurement can be ex-
the apparatugg is completely ignored. pressed via the entropy of the measured variables and the
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entropy of the dephased micro-subsystem. To do that, we A B A B'
should keep in mind that due to the ideal character of the
measurement, the marginal density matrix of the measur- ' -
ing variables coincides with the reduced one of the object. .
Also, because the only source of decoherence is in the sub- T
systemD in transformation (8), the entropy of the joint ——e=""
density matrixp 45 coincides with the entropy of this de-

phasing subsystem. As a result we get

—_—

R Figure 1 Unitary representatiotlc of the extended cloning su-
I. = S|prea] — Slpp]- (10)  peroperator (12), which is defined on the basis of eigenstates of

. . . two two-level systemsi and B. Basis states of the joid + B
i.e., by contrast with the general case, in the forraloiays system (dashed lines), which exist after setting the sy&emith

positivedifference between entropy of the reduced by thethe transformatiorR into the ground statél), are transferred

measurement state of the object and entropy of the appgng the statesi)|) (bold dotted arrows), whereas the rest of the
ratus microstates. The latter is inevitably less than the engiates are transferred into the staidéj # i) (thin dotted ar-
tropy of the resulted state of the measured object, becausgyys)

otherwise it will not meet the ideal measurement require-
ments according to which a macro-variable describing the

result of the measurement does not show classical fluctynstance, could lead to uncontrolled processes, up to loos-

ations. Mathematically, this means thiai = k4, where Ing atoms f_rom the trap [11]. However, S_UCh effects can

~ Y e s . be avoided if we apply a non-reversal setting of the entan-

kp i 2 Z|Z>B<Z|BF\’.§.A :IZi ili) 4 (il 4, and rgspectl\é_e tho_ glement matrixR, and, respectively, an invariant cloning

332 t|oz>thséar;uca)?1c?r);h:)g;gzgl?{[ng{atrr]lteumigpocsigmig)tyjr\r:verlg IS transformationC to the previously set equilibrium state
TREre 1)),

fore, the ml(':rostat(.es entropy rea.ches the entﬂjﬁyed} of Let us now prove that the extended superoperator
the measuring variable, (and, simultaneously;z) only of entangling measurement (8) can be physically imple-
for the case of “maximally independent”, orthogonal, mi- mented with the help of unitary transformation immedi-
crostates|i)). In this case, the coherent information (10) ately in the system of object—apparatus—internal variables,
vanishes. i.e.,inH4 ® Hg ® Hp. Construction of such a transfor-
mation splits into two steps.
First, we construct a unitary mdgg in the system
3. Unitary implementation of the extended object-apparatus of the form of Eq (11) and take into ac-
superoperators count that after this transformation 4 ® H g there will
be only cloning state)|q).
The non-reversal, invariant in respect to the apparatus’ Then, after selecting an arbitrary initial state)) in
state, cloning superoperator (7) can be presented in thélp, itis sufficient to construct in the subsystefy @ Hp
form C = UcR, as a superposition of the superopera-2a unitary partial entanglement operatt;, which in-
tor Ro = Za @ [1)(1]3, (m| ©p |m), which sets an cludes, in general case, dephasing effects and fits the fol-
initial state of the systemB into the given pure state lowing relations
[1)(1]|, and the re_slp_ecnve_ unitary c_lonlng superope_ratorUE|Z->H0>> = 1i)|i)) (13)
U, = Uy ©ap Ug 7, in which the unitary transformation ) o ]
Uo H, ® Hp has the form: foralli =1,...,d. Taking into account that vectoys are
orthogonal to each other, such map preserves initial metric,
[)|1) — |i)]2),  |0)|7 # 1) — |kij)|lis) (11)  i.e., orthonormalization of the transformed vectors. This
. . guarantees that there is a space, which m#ps d vec-
where two arbitrary indices;;, l;; obey the only con- 5.5 1;y/15 £ 7)) in a respective arbitrary chosen basis set

straintk;; # l;;. This transformation is illustrated in Fig. 1 in a subspace orthogonal to tHemensional subspace of
on example of two two-level systems. The extended super;,

; vectors|i)||¢)). Two-dimensional example of such a uni-
operatofc = C(®4 ® [1)(1]) corresponding t& can be [0)]192) P

o ; . o tary transformation is illustrated in Fig. 2.
explicitly represented via the unitary transformationinthe — “\ysith the help of equations (13) and (11) one can easily
bipartite system:

see that the extended superoperator of entangling measure-
o =Un(o4® | DANUSL. 12 ment (8) can belwntten ina form of superposition of uni-

¢ C( A® I D = (12) tary transformations acting on the object density matrices
From experimental point of view, it is well known that re- at the initial staté1)||0)) of the apparatus and its internal
versibility of a physical transformation, which corresponds variables:
to the unitarity, is of great importance for a potential im- .
plementation. This is because the reversibility is, gener—gM = (Za®Up) (Uc@Ip) (O®[1)(1]®1]0))((0]])-(14)
ally, connected with the exchange of energy and respectivén a case of pure cloning, i.e., without any dephasing, the
recoil momentum, which for the cold atoms in traps, for unitary superoperat@f is represented by the identity su-
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B D B' b’ Here, the coincidence of the states of the subsystéarsd
——— —— o0 _—_—— = 26 Bin bipartite stateg; = |1)|1), ¥, = |2)|2) provides an
Vo A e UIT = 2L evidence of the clonal character of the resulting state. Such
N g dimension-saving symbolic representations are especially
eI e effective for implementation of the calculations with the
T JoUT. —'—'—“_\ I1L " help of computer algebra, that perform linear transforma-
TRt |LC tions with respective degenerate multidimensional density

matrices?, ;" without any visible technical problems.

Figure 2 Unitary transformatiort/x for partial entanglement of
two qubits, wherg[|0), [0)}, {|1), |1)}, and{]2), |2)} designate . . . .
three orthogonal bases Hiip arbitrary rotated to each other S. PhyS|Cal 'mplementaﬂon of the entang“ng

measurement in a system of three qubits

_ .In this section, we analyze an explicit mathematical form
peroperator (one should also take into account freedom iy 1o transformation, which can be used for a possible

selection the basis states, which leads to further generals, herimental implementation of the specific realization
ization or S|_mpl|f|cat|on due to thg cqrrespondlng unitary of the extended superoperator of the entangling quantum
transformation of the form _; ¢"#7{5) (jl). measurement described in Sec. 3. A system of two two-
level atoms in a resonator could serve as a physical ex-
. . ample for such an experimental implementation. It can be
4. Matrix representation of the extended well modelled by a three-qubit system in which qubits
superoperators A and B correspond to the two-level atoms in the res-
onator and third qubitD, describes the states of the res-
onator mode of electromagnetic field, both vacuum and
Pone-photon.

The transformatiori/ is given by Eqg. (11) and we
should only specify the entangling superoperatfs,
Awhich in accordance with relation (13) could be specifi-
cally defined by the map

From practical point of view, one of the most useful vari-
ants of the matrix representation of the extended supero
eratorsA — A+B is based on the fixed linear bagi$
for determining the input statesy = 3 p,,é2. The cor-
responding representation of the resulting density matri
pap = Y. pnEeé is determined then by the set of basis

operators:

Y U 5 1DI[0Y) — [1)][1)),

En =80, Pan =) pubn. 2)[10)) — [1)]12)) (16)
Thus, the extended superoperators are represented by th&)[[0)) — [1)[[1)) ,

operator sef,, n = 1,...,d? inthe spacéi, @ Hg. Op-  1110)) — [2)]12)),

eratorse,,, in their turn, can be represented by the corre-where underlining marks the vectors orthogonal to the ini-
sponding matrices af? x d*-dimensions (or by the matri-  tja| ones. The entanglement matrix in this case has all di-
ces of highest dimension in case of additionally extendedagona| elements equal to unit and the only off-diagonal
spacef{ ). o elementR,, = R3; = ((1]2)) = ¢, which does not equal
One can clearly see that positivity of the extended op-tg unit. Transformation for the last pair of vectors can vary
eratoré — &, corresponds to the positivity &, in a  from shown above by an arbitrary unitary transformation

positive basig?. in the subspace of the respective output pair of the states
Representation of the unitary extended superoperatoyi)||1)), [2)]|2)) .

inI case of pu;e ir;:tial Stalteﬁ% =f 1) (1] re}%uces sim- Combining transformatiorig- andi/p, we receive the

ply to a set of orthogonal wave-functions iy ® Hp. resulting unitary ma — (] in):

Really, for the two-indices symbolic representatin= J ymacp = (L ® Up)(Uc @ In)

S Uk o]l) @|1)(1])U~* we receive in the basig) (/| ABD = A'B'D

the following matrix representatiody, = ¥, %", where @ [L)[1)[[0)) — [DID[[1)), &

@, = U(||k)|1)) is an arbitrary, in general case, setdf DIV — [1LIL),

orthogonal vectors in d x d-dimensional space. In par- IDI2)110)) — [1)[2)]12))

ticular, for the considered above two-dimensional unitary IDIDII0) — [HI[2)) (17)

cloning transformation in accordance with the transforma- & 2D110)) — 2)[2)]12)), &

tion (13) it is represented by a pair of four-dimensional 2DI19) — [2)[2)]12))

wave-functions in the right side of the equation, which 12)12)110)) — [2)[)[1)),

in the basigi)|j) are described by the rectangular matrix 1212)110)) — 12[1){]1)) -

d x d? of the form: Symbols@® mark here the states, which exist at the input
1000 and are formed at the output due to the transformations of

(%) = (o 00 1) : (15 the initial states of the formyp 4)|1)|0) that are used in our
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model system. As a result, only two states out of the entirevhere the internal degrees of freedomdnx d x d-
spaceH 4 ® Hg ® Hp are used both at the input and out- dimensional Hilbert spacei(is the number of measured
put. It is worth to note that definition of the transformation states)H 4 ® Hg ® Hp cause the dephasing.
(17) is not a unigue one because in the corresponding in- It is argued that the coherent information taken at the
active 6d-subspace could be defined any arbitrary unitaryentangling measurement is represented as positively
transformation. defined difference between taken at the measurement clas-
With the accuracy up to the local transformations, sical information and entropy of the internal dephasing
the unitary map (17) in orthogonal basjg)|l)||m)), variables.

m = 0,0 (specifically]|1)) = [|0)) = (1,0),]|2)) = Possible physical realization in a simple three-qubit
(¢, /T —1q?)J[1)) = o)) = (0,1),]2)) = model, which implements the entangling quantum mea-

surement transformation with an arbitrary degree of entan-
glement is examined. Two qubits in the model correspond
to the two two-level atoms in a resonator, whereas the third

(=1 —|q|?,¢*)) the corresponding matrix representa-
tion has the form:

1000 0 0 00 gubit models the quantum microstructure of the apparatus.
0100 0 0 00 The model allows demonstration of a totally controllable
0010 0 0 00 transition from the completely coherent measurement in
0001 0 0 00 the form of the quantum entanglement towards the stan-

Uep=10000 0 0 10| - (8 gad guantum measurement in a form of wave-function
0000 0 0 01 collapse. It could also be useful in experiments studying
0000 q —v/1—1¢l?200 non-reversal and decoherence processes under maximally
0000 /1— g2 q* 00 controllable conditions.

Matrix representation of the corresponding extended su-, . .
peroperato€ = Uy, (® ® |1)(1) ® |O><O|)U5117 results, Acknowledgement¥his work was supported in part by the Rus-

keepina in mind its unitarity and with the help of Sec. 4 sian Foundation for Basic Research under Grant Nos. 01-02—
Keeping In mind Its unitarity and wi P - % 16311, 02-03-32200, and by INTAS under Grant No. INFO 00—
in two 8-dimensional vectors marked by symbpin the ;-4

right-side of the equation (17):
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