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Abstract: We clarify the microscopic structure of the entangling
quantum measurement superoperators and examine their possi-
ble physical realization in a simple three-qubit model, which im-
plements the entangling quantum measurement with an arbitrary
degree of entanglement.
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|1〉

Unitary transformationUE for partial entanglement of two
qubits, where{|0〉, |0〉}, {|1〉, |1〉}, and {|2〉, |2〉} designate
three orthogonal bases inHD arbitrary rotated to each other
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1. Introduction

In quantum information theory, generalized description of
most important quantum transformations, which extend
the class of unitary transformations lying in the founda-
tions of quantum theory of dynamically closed quantum
systems [1], plays very important role [2]. Particulary, the
resulting transformation in a system describing only the
measured object to which we apply the standard quantum
measurement can be written in a form of so called projec-
tive measurement superoperator:

MP =
∑

|k〉〈k| ¯ |k〉〈k| , (1)

where thek-terms of the sum describe the normalized pos-
itive superoperator measure (PSM), which is represented
here by the orthogonal projection superoperators of the
form

Ek = |k〉〈k| ¯ |k〉〈k| ,
∑

Tr Ek = Tr ¯ .

Respectively,
∑ E+

k Î =
∑ |k〉〈k| = Î (see, for instance,

[3]). The substitution symbol̄ is to be substituted by a

transformed operator, which is simply the density matri-
ces in our case [4,5]; indexk enumerates the eigen vectors
of the measured physical variable, which is described by
the operatorÂ =

∑
λk|k〉〈k| in the Hilbert spaceHA of

the measured object. The generalized measurement, which
is carried out in the extended spaceHA ⊗ Ha of the ini-
tial and auxiliary systems, is described by the PSM of
the general formEk = F̂k ¯ F̂+

k in the linear space of
operators inHA. The corresponding classical probabilis-
tic measure on the spectrum of physically possible values
λk of the operatorÂ is described by the linear functional
ρ̂A → P (k) = Tr Êkρ̂A, which is determined by a non-
orthogonal expansion of the unit operator [6]

Êk = F̂+
k F̂k,

∑
Êk = Î ,

which is the positive operator valued measure (POVM) [7].
Due to the progress in quantum state engineering made

over last decades [8], the commonly accepted concept of
quantum measurement as a projective transformation has
been essentially revised. It includes now various types
of measurements, e.g., the measurement that provides the
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measured information in a form of quantum entanglement
between the apparatus and the measured object. By con-
trast with the classical theory, the equalityA ≡ B, which
means the coincidence of the physical valuesA andB for
all their possible valuesλ, can be realized now differently.
This equality does not prevent arbitrary relations between
the phasesϕλ corresponding to the eigen wave-functions
Ψλ implementing the equalityA = B = λ. Therefore, the
standard quantum measurement implies complete absence
of the phase correlations, whereas the completely coherent
measurement implies the defined set of phases.

The respective most general abridged notation for the
ideal quantum measurement transformation in the object–
apparatus system is given by theentanglingquantum mea-
surement superoperator [5]. This entangling quantum mea-
surement can be considered as a combination of the com-
pletely coherent measurement, which provides the mea-
surement results in a form of quantum entanglement be-
tween the apparatus and the object, and additional trans-
formation dephasing the states of the apparatus

D =
∑

ij

Rij |i〉〈i| ¯ |j〉〈j|

with the positive entanglement matrixR ≥ 0 with the di-
agonal elementsRii ≡ 1. The entangling quantum mea-
surement is an intermediate transformation between the
identity superoperator transformationI =

∑
ij |i〉〈i| ¯

|j〉〈j|, which corresponds to the case ofRij ≡ 1, and the
projective measurement transformation (1), which corre-
sponds to the diagonal matrixRij = δij .

Definition of quantum measurement considered in
Ref. [5] is based on the natural interpretation of the quan-
tum measurement as the transformation, which is invari-
ant with regard to the initial state of the apparatus. How-
ever, in a wide range of experimental situations [8–11]
the quantum measurement transformations are applied to
a bipartite system when the initial state of one of the
subsystems is explicitly known (it can be, for example,
the ground or specially prepared quantum state of an
atom or non-excited resonator mode). Both cases can be
described with the superoperators of a specialized type,
which instead of the complete mapping (object+apparatus)
→ (object+apparatus) define the mapping (object)→ (ob-
ject+apparatus). It is worth to note here that for a po-
tentially capable experimental realization of the measure-
ment transformations considering appropriate mathemat-
ical representation of a specific physical situation is of
prime importance.

In this work, we elucidate possibility of physical im-
plementation of an entangling measurement. The gen-
eral theory is illustrated on example of two-level models,
which describe in an idealized form some features of quan-
tum transformations that are typical, for instance, for the
experiments with trapped atoms.

In Sec. 2 we give precise mathematical definitions of
the extended superoperators and discuss how they can be
applied to the various types of the ideal quantum measure-
ment. Also, we give physical interpretation of the coherent

information, which is bound to the entangling quantum
measurement. Unitary implementations of the extended
superoperators in connection with the experimental speci-
ficity of physical implementations of non-reversal trans-
formations are considered in Sec. 3. In Sec. 4 we con-
sider specific matrix representations in application to the
extended superoperators technique. In Sec. 5 we specify a
unitary realization of the entangling measurement in a sim-
ple three-qubit model, which implements the entangling
quantum measurement with an arbitrary degree of entan-
glement.

2. Mathematical definitions of extended
superoperators

In order to clarify physical implementation of the measure-
ment transformations, its mathematical representation has
to have a clear and simple form. Extended superoperators
perfectly fit this purpose and their definitions are consid-
ered below in detail.

Let us consider a superoperator transformationS in a
bipartite systemA + B, which we apply to the density
matrix ρ̂AB = ρ̂A ⊗ ρ̂0

B of this system in the Hilbert
spaceHA ⊗ HB , whereρ̂0

B is an arbitrary chosen fixed
state. Then, the result of this superoperator transformation
is simply a mapC(HA) → C(HA ⊗HB) of the operators
algebra inHA onto the corresponding algebra inHA⊗HB

and can be written in a symbolic representation as

E = S(¯⊗ ρ̂0
B) , (2)

where the substitution symbol̄ should be substituted by
single transformed operatorρ̂A. By contrast withS, theex-
tended superoperatorE has an “extended” in comparison
with the inputρ̂A space with the elementŝρAB = E ρ̂A.

If the result of the superoperator transformation does
not depend on̂ρ0

B , i.e., E = E0 ≡ S(¯ ⊗ ρ̂B) for all
ρ̂B , we have another special case, when the superoperator
transformationS can be described entirely with the ex-
tended superoperator (2). The corresponding structure of
such invariant superoperator has the form:

S =
∑

ij

(
SA

ij ¯A

)
⊗

(
|i〉〈j|Tr¯B

)
, (3)

where the trace operation makes the result independent of
an initial state of the systemB.

The extended superoperator (2) may be treated as a
“hybrid” superoperator transformation over the variables
of the systemA and the density matrix operator over the
variables of the systemB. Respectively, tracing the ex-
tended superoperator over the variables of the systemB re-
sults in a regular superoperatorSA = TrBE , which maps
algebraC(HA) onto itself. The relationSA → E can be
considered as an extension of the value area of the super-
operator, which is related to the concrete definition of the
respective physical transformation in an open system in the
symbolic representation form (2).
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Apparently, the extended superoperator (2) has the
same specificity for all superoperators properties—the
complete positivity and normalization. In case ofd-
dimensional Hilbert spacesHA, HB , the extended super-
operator can be represented in the matrix representation by
the rectangular matrices ofd4 × d2-dimension, whereas a
regular superoperatorS is described by rectangular matri-
ces ofd4 × d4-dimension. In a specific case of two qubits,
these are16× 4 and16× 16 matrices, respectively. Keep-
ing this in mind, one can essentially reduce complexity of
the respective calculations performing them in terms of the
extended superoperators, when it is possible.

With the help of an orthogonal basis|k〉 in HA the ex-
tended superoperator (2) has the following, as one can eas-
ily see, most generalized form:

E =
∑

ŝkl〈k| ¯ |l〉, (4)

whereŝkl is the set of operators inHA ⊗HB , which sat-
isfy the above mentioned complete positivity and normal-
ization conditions.

From the properties of the extended superoperators it
follows that more than one regular superoperator can cor-
respond to the extended one. Also, possibility of physical
implementation of the extended superoperatorE , which
satisfies the complete positivity condition, readily follows
from the general criterion of physical implementation of a
regular superoperator [2] and it is enough to have only the
existence proof of a complete positive superoperatorS and
density matrixρ0

B , related toE according to the Eq. (2).
Let us consider the entangling measurement superop-

erator:

M =
∑

ijm

Rij |i〉|i〉〈j|〈j|〈m|〈i| ¯ |j〉|m〉 (5)

with the entanglement matrix(Rij) ≥ 0, Rii ≡ 1 [5],
which is a particular case of the invariant superoperator
(3). The resulted state after its action does not depend on
an initial state of the systemB and with the help of (4) the
corresponding extended entangling measurement superop-
erator has the form:

EM =
∑

ij

(
Rij |i〉|i〉〈j|〈j|

)〈i| ¯ |j〉 . (6)

Here, the resulted statêρAB is represented only via the
cloned basis states|i〉|i〉, which means that the quantum
measurement was an ideal one. Also, a fact thatRij 6= 1 at
i 6= j is an evidence that the measurement is an incoherent
one. Even in the case of complete coherency,Rij ≡ 1,
when the entangling superoperator (5) describescloning
transformationof the basis states,

C =
∑

ijm

|i〉|i〉〈j|〈j|〈m|〈i| ¯ |j〉|m〉 , (7)

it is non-reversalbecause information of an initial state of
the apparatuŝρB is completely ignored.

The extended superoperator for the entangling mea-
surement can be additionally extended in a way to clar-
ify the quantum nature of the entanglement matrix. This
can be readily done by introducing additional internal de-
grees of freedom inHD space that are responsible for the
dephasing effects, i.e., in the form of the extended super-
operatorA → (A+B+D) of the form:

EM =
∑

ij

|i〉|i〉||i〉〉〈〈j||〈j|〈j|〈ij| ¯ |j〉 , (8)

where internal degrees of freedom are in the double brack-
ets and, generally, are non-orthogonal and are described
by the scalar product〈〈i|j〉〉 = Rij , which ensures co-
incidence with Eq. (6) after averaging over states inHD.
Such representation of the extended superoperator clarifies
physical essence of the dephasing processes as modulation
of the states|i〉|i〉 HA ⊗ HB by the internal states||i〉〉,
which define an additional quantum “phase” depending, in
general, oni.

The states of the micro-variables of the apparatus are
described in accordance with Eq. (8) by the partial density
matrices:

ρ̂D =
∑

i

pi||i〉〉〈〈i|| , (9)

where probabilitiespi = 〈i|ρ̂A|i〉 are determined only by
the density matrix of the measuring object and by the eigen
basis of the measuring physical variableÂ =

∑
i λi|i〉〈j|.

In case of the standard non-coherent measurement it co-
incides (at a properly chosen basis set) with the reduced
density matrix of the object

ρ̂red =
∑

i

|i〉〈i|ρ̂A|i〉〈i| .

In the opposite case of the completely coherent measure-
ment,||i〉〉 ≡ ||0〉〉, we haveρ̂D = ||0〉〉〈〈0|| and, respec-
tively, the microstates entropy equals to zero.

In this connection, it is worth to note that the zero mi-
crostates entropy does not prevent manifestation of phys-
ically essential macroscopic fluctuations in the system.
Besides a subset of physical variables for which||0〉〉 is
the eigenstate, there is an “overwhelming majority” (this
qualitative characteristic can be readily concretized math-
ematically) of other variables that results in quantum fluc-
tuations, of perfectly macroscopic character inclusive. It
is clear, in principle, that any quantum state of a macro-
object can be considered as a pure state at the microscopic
level in the frame of sufficiently complete microscopic
model, which includes all physical subsystems the object
interacts with.

The coherent information [12] or preserved entangle-
ment [13,14]

Ic = S[ρ̂B ]− S[ρ̂AB ]

corresponding to the entangling measurement can be ex-
pressed via the entropy of the measured variables and the
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entropy of the dephased micro-subsystem. To do that, we
should keep in mind that due to the ideal character of the
measurement, the marginal density matrix of the measur-
ing variables coincides with the reduced one of the object.
Also, because the only source of decoherence is in the sub-
systemD in transformation (8), the entropy of the joint
density matrixρ̂AB coincides with the entropy of this de-
phasing subsystem. As a result we get

Ic = S[ρred]− S[ρ̂D]. (10)

i.e., by contrast with the general case, in the form ofalways
positivedifference between entropy of the reduced by the
measurement state of the object and entropy of the appa-
ratus microstates. The latter is inevitably less than the en-
tropy of the resulted state of the measured object, because
otherwise it will not meet the ideal measurement require-
ments according to which a macro-variable describing the
result of the measurement does not show classical fluctu-
ations. Mathematically, this means thatk̂B ≡ k̂A, where
k̂B =

∑
i i|i〉B〈i|B , k̂A =

∑
i i|i〉A〈i|A, and respective to

each|i〉 states exhibit only quantum uncertainty, which is
due to the nonorthogonality of the microstates||i〉〉. There-
fore, the microstates entropy reaches the entropyS[ρ̂red] of
the measuring variablêkA (and, simultaneously,̂kB) only
for the case of “maximally independent”, orthogonal, mi-
crostates||i〉〉. In this case, the coherent information (10)
vanishes.

3. Unitary implementation of the extended
superoperators

The non-reversal, invariant in respect to the apparatus’
state, cloning superoperator (7) can be presented in the
form C = UCR0 as a superposition of the superopera-
tor R0 = IA ⊗ |1〉〈1|∑m〈m| ¯B |m〉, which sets an
initial state of the systemB into the given pure state
|1〉〈1|, and the respective unitary cloning superoperator
UC = UC ¯AB U−1

C , in which the unitary transformation
UC HA ⊗HB has the form:

|i〉|1〉 → |i〉|i〉 , |i〉|j 6= 1〉 → |kij〉|lij〉 , (11)

where two arbitrary indiceskij , lij obey the only con-
straintkij 6= lij . This transformation is illustrated in Fig. 1
on example of two two-level systems. The extended super-
operatorEC = C(¯A ⊗ |1〉〈1|

)
corresponding toC can be

explicitly represented via the unitary transformation in the
bipartite system:

EC = UC

(¯A ⊗ |1〉〈1|
)
U−1

C . (12)

From experimental point of view, it is well known that re-
versibility of a physical transformation, which corresponds
to the unitarity, is of great importance for a potential im-
plementation. This is because the reversibility is, gener-
ally, connected with the exchange of energy and respective
recoil momentum, which for the cold atoms in traps, for

B'A'BAA

|1〉

Figure 1 Unitary representationUC of the extended cloning su-
peroperator (12), which is defined on the basis of eigenstates of
two two-level systemsA andB. Basis states of the jointA + B
system (dashed lines), which exist after setting the systemB with
the transformationR0 into the ground state|1〉, are transferred
into the states|i〉|i〉 (bold dotted arrows), whereas the rest of the
states are transferred into the states|i〉|j 6= i〉 (thin dotted ar-
rows)

instance, could lead to uncontrolled processes, up to loos-
ing atoms from the trap [11]. However, such effects can
be avoided if we apply a non-reversal setting of the entan-
glement matrixR0 and, respectively, an invariant cloning
transformationC to the previously set equilibrium state
|1〉〈1|.

Let us now prove that the extended superoperator
of entangling measurement (8) can be physically imple-
mented with the help of unitary transformation immedi-
ately in the system of object–apparatus–internal variables,
i.e., inHA ⊗HB ⊗HD. Construction of such a transfor-
mation splits into two steps.

First, we construct a unitary mapUC in the system
object–apparatus of the form of Eq (11) and take into ac-
count that after this transformation inHA⊗HB there will
be only cloning states|i〉|i〉.

Then, after selecting an arbitrary initial state||0〉〉 in
HD, it is sufficient to construct in the subsystemHB⊗HD

a unitary partial entanglement operatorUE , which in-
cludes, in general case, dephasing effects and fits the fol-
lowing relations

UE |i〉||0〉〉 = |i〉||i〉〉 (13)

for all i = 1, . . . , d. Taking into account that vectors|i〉 are
orthogonal to each other, such map preserves initial metric,
i.e., orthonormalization of the transformed vectors. This
guarantees that there is a space, which mapsd2 − d vec-
tors |i〉||j 6= i〉〉 in a respective arbitrary chosen basis set
in a subspace orthogonal to thed-mensional subspace of
vectors|i〉||i〉〉. Two-dimensional example of such a uni-
tary transformation is illustrated in Fig. 2.

With the help of equations (13) and (11) one can easily
see that the extended superoperator of entangling measure-
ment (8) can be written in a form of superposition of uni-
tary transformations acting on the object density matrices
at the initial state|1〉||0〉〉 of the apparatus and its internal
variables:

EM =
(IA⊗UE

)(UC⊗ID

)(¯⊗|1〉〈1|⊗||0〉〉〈〈0||).(14)

In a case of pure cloning, i.e., without any dephasing, the
unitary superoperatorUE is represented by the identity su-
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Figure 2 Unitary transformationUE for partial entanglement of
two qubits, where{|0〉, |0〉}, {|1〉, |1〉}, and{|2〉, |2〉} designate
three orthogonal bases inHD arbitrary rotated to each other

peroperator (one should also take into account freedom in
selection the basis states, which leads to further general-
ization or simplification due to the corresponding unitary
transformation of the form

∑
j eiϕj |j〉〈j|).

4. Matrix representation of the extended
superoperators

From practical point of view, one of the most useful vari-
ants of the matrix representation of the extended superop-
eratorsA → A+B is based on the fixed linear basisêA

k

for determining the input stateŝρA =
∑

ρnêA
n . The cor-

responding representation of the resulting density matrix
ρ̂AB =

∑
ρnE êA

n is determined then by the set of basis
operators:

Ên = E êA
n , ρ̂AB =

∑
ρnÊn .

Thus, the extended superoperators are represented by the
operator set̂En, n = 1, . . . , d2 in the spaceHA⊗HB . Op-
eratorsÊn, in their turn, can be represented by the corre-
sponding matrices ofd2×d2-dimensions (or by the matri-
ces of highest dimension in case of additionally extended
spaceHB).

One can clearly see that positivity of the extended op-
eratorE → Ên corresponds to the positivity of̂En in a
positive basiŝeA

n .
Representation of the unitary extended superoperator

in case of pure initial stateŝρ0
B = |1〉〈1| reduces sim-

ply to a set of orthogonal wave-functions inHA ⊗ HB .
Really, for the two-indices symbolic representationE =∑

U
(〈k| ¯ |l〉⊗ |1〉〈1|)U−1 we receive in the basis|k〉〈l|

the following matrix representation:̂Ekl = ΨkΨ+
l , where

Ψk = U
(‖k〉|1〉) is an arbitrary, in general case, set ofd

orthogonal vectors in ad × d-dimensional space. In par-
ticular, for the considered above two-dimensional unitary
cloning transformation in accordance with the transforma-
tion (13) it is represented by a pair of four-dimensional
wave-functions in the right side of the equation, which
in the basis|i〉|j〉 are described by the rectangular matrix
d× d2 of the form:

(Ψk) =
(

1 0 0 0
0 0 0 1

)
. (15)

Here, the coincidence of the states of the subsystemsA and
B in bipartite statesΨ1 = |1〉|1〉, Ψ2 = |2〉|2〉 provides an
evidence of the clonal character of the resulting state. Such
dimension-saving symbolic representations are especially
effective for implementation of the calculations with the
help of computer algebra, that perform linear transforma-
tions with respective degenerate multidimensional density
matricesΨkΨ+

l without any visible technical problems.

5. Physical implementation of the entangling
measurement in a system of three qubits

In this section, we analyze an explicit mathematical form
of the transformation, which can be used for a possible
experimental implementation of the specific realization
of the extended superoperator of the entangling quantum
measurement described in Sec. 3. A system of two two-
level atoms in a resonator could serve as a physical ex-
ample for such an experimental implementation. It can be
well modelled by a three-qubit system in which qubits
A and B correspond to the two-level atoms in the res-
onator and third qubit,D, describes the states of the res-
onator mode of electromagnetic field, both vacuum and
one-photon.

The transformationUC is given by Eq. (11) and we
should only specify the entangling superoperatorUD,
which in accordance with relation (13) could be specifi-
cally defined by the map

|1〉||0〉〉 → |1〉||1〉〉 ,
|2〉||0〉〉 → |1〉||2〉〉 ,
|1〉||0〉〉 → |1〉||1〉〉 ,
|1〉||0〉〉 → |2〉||2〉〉 ,

(16)

where underlining marks the vectors orthogonal to the ini-
tial ones. The entanglement matrix in this case has all di-
agonal elements equal to unit and the only off-diagonal
elementR12 = R∗21 = 〈〈1|2〉〉 = q, which does not equal
to unit. Transformation for the last pair of vectors can vary
from shown above by an arbitrary unitary transformation
in the subspace of the respective output pair of the states
|1〉||1〉〉, |2〉||2〉〉 .

Combining transformationsUC andUD, we receive the
resulting unitary mapUCD =

(
ÎA ⊗ UD

)(
UC ⊗ ÎD

)
:

ABD ⇒ A′B′D′
⊕ |1〉|1〉||0〉〉 → |1〉|1〉||1〉〉 , ⊕
|1〉|1〉||0〉〉 → |1〉|1〉||1〉〉 ,
|1〉|2〉||0〉〉 → |1〉|2〉||2〉〉 ,
|1〉|1〉||0〉〉 → |1〉|1〉||2〉〉 ,

⊕ |2〉|1〉||0〉〉 → |2〉|2〉||2〉〉, ⊕
|2〉|1〉||0〉〉 → |2〉|2〉||2〉〉 ,
|2〉|2〉||0〉〉 → |2〉|1〉||1〉〉 ,
|2〉|2〉||0〉〉 → |2〉|1〉||1〉〉 .

(17)

Symbols⊕ mark here the states, which exist at the input
and are formed at the output due to the transformations of
the initial states of the form|ψA〉|1〉|0〉 that are used in our
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6 B.A. Grishanin and V.N. Zadkov: Physical implementation of entangling measurements

model system. As a result, only two states out of the entire
spaceHA ⊗HB ⊗HD are used both at the input and out-
put. It is worth to note that definition of the transformation
(17) is not a unique one because in the corresponding in-
active6d-subspace could be defined any arbitrary unitary
transformation.

With the accuracy up to the local transformations,
the unitary map (17) in orthogonal basis|k〉|l〉||m〉〉,
m = 0, 0 (specifically,||1〉〉 = ||0〉〉 = (1, 0),||2〉〉 =
(q,

√
1− |q|2),||1〉〉 = ||0〉〉 = (0, 1),||2〉〉 =

(−
√

1− |q|2, q∗)) the corresponding matrix representa-
tion has the form:

UCD =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 q −

√
1− |q|2 0 0

0 0 0 0
√

1− |q|2 q∗ 0 0




. (18)

Matrix representation of the corresponding extended su-
peroperatorE = UCD

(¯ ⊗ |1〉〈1〉 ⊗ |0〉〈0|)U−1
CD results,

keeping in mind its unitarity and with the help of Sec. 4,
in two 8-dimensional vectors marked by symbol⊕ in the
right-side of the equation (17):

(Ψk) =
(

1 0 0 0 0 0 0 0
0 0 0 0 0 0 q

√
1− |q|2

)
.

Second vector determines a dephasing influence of the
two-level subsystemD on the cloning process because the
complete stateΨ2 = |2〉|2〉 has some phase disturbance
due to the difference of state||2〉〉 of the subsystemD from
||1〉〉 in the stateΨ1 = |1〉|1〉||1〉〉. In general case, after the
entangling measurement we have the output, which is in-
termediate between purely quantum, i.e., coherent, repre-
sentation of the output information and classical, i.e., com-
pletely dephased representation. Module of the parame-
ter q sets the degree of coherency, whereas its phase—
freedom in choosing the phases of the cloned states. At
q = 0 we have the standard projective measurement.

6. Conclusions

In conclusion, we have shown that mathematical technique
based on the extended superoperators fits well for describ-
ing physical implementations of the entangling quantum
measurements, both in case of explicitly known state of
the apparatus and without any dependence of the measure-
ment results on its state.

It is shown that the extended superoperator of the en-
tangling measurement has most valuable from physical
point of view information representation defined with only
a set of state vectors in a joint three-partite system “object–
apparatus–internal degrees of freedom of the apparatus”,

where the internal degrees of freedom ind × d × d-
dimensional Hilbert space (d is the number of measured
states)HA ⊗HB ⊗HD cause the dephasing.

It is argued that the coherent information taken at the
entangling measurement is represented as everpositively
defined difference between taken at the measurement clas-
sical information and entropy of the internal dephasing
variables.

Possible physical realization in a simple three-qubit
model, which implements the entangling quantum mea-
surement transformation with an arbitrary degree of entan-
glement is examined. Two qubits in the model correspond
to the two two-level atoms in a resonator, whereas the third
qubit models the quantum microstructure of the apparatus.
The model allows demonstration of a totally controllable
transition from the completely coherent measurement in
the form of the quantum entanglement towards the stan-
dard quantum measurement in a form of wave-function
collapse. It could also be useful in experiments studying
non-reversal and decoherence processes under maximally
controllable conditions.
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