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Coherent-information analysis of quantum channels in simple quantum systems
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The coherent-information concept is used to analyze a variety of simple quantum systems. Coherent infor-
mation was calculated for the information decay in a two-level atom in the presence of an external resonant
field, for the information exchange between two coupled two-level atoms, and for the information transfer from
a two-level atom to another atom and to a photon field. The coherent information is shown to be equal to zero
for all full-measurement procedures, but it completely retains its original value for quantum duplication.
Transmission of information from one open subsystem to another one in the entire closed system is analyzed
to learn quantum information about the forbidden atomic transition via a dipole active transition of the same
atom. It is argued that coherent information can be used effectively to quantify the information channels in
physical systems where quantum coherence plays an important role.

PACS numbe(s): 03.67.Hk, 03.65.Bz, 89.78.c

[. INTRODUCTION in physical systems is especially important for planning ex-
periments in new fields of physics, such as quantum compu-
The concept of a noisy quantum channel may be used ifations, quantum communications, and quantum cryptogra-
many information-carrying applications, such as quantunphy [1,11], where the coherent information of the quantum
communication, quantum cryptography, and quantum comehannel determines its potential efficiency.
puters[1]. Shannon'’s theory of informatid2—5| is a purely In this paper, we apply the coherent-information concept
classical one and cannot be applied to quantum mechanictd an analysis of the quantum information exchange between
systems. Therefore, much recent work has been done dwo systems, which in general may have essentially different
qguantum analogs of the Shannon thef#y-11]. Thecoher-  Hilbert spaces. For this purpose, we must specify the noisy
ent informationintroduced in[7,9] is suggested to be analo- quantum information channel and its corresponding superop-
gous to the concept ahutual informationin classical infor-  eratorS, which transforms the initial state of the first system

mation theory. It is defined by into the final state of another system. A classification scheme
for possible quantum channels connecting two quantum sys-
le=Sour— Se, (1) tems is shown in Fig. 112]. In addition to the two-time

channels shown in the figure, we consider also their one-time
where S, is the entropy of the information channel output analogs. Two-time quantum channels are widely used in
andS, is theentropy exchanggs,9] taken from the channel quantum communications and measurements, whereas one-
reservoir. If S,,— S>>0, then, expressed iqubits |, de-  time quantum channels are appropriate for quantum comput-
scribes a binary logarithm of the Hilbert space dimension, all
states of which are transmitted with the probability: 1 in
the limit of infinitely large ergodic ensembles. Otherwise, we @
setl.=0. (a)

The validity of the coherent information concept was

proved in[9,10], and it was used successfully for quantifying
the resources needed to perform physical tasks. Coherent in-
formation is expected to be as universal as its classical ana-
log, Shannon information, and it characterizes a quantum
information channel regardless of the nature of both quantum
information and quantum noise. In contrast to Shannon in-
formation in classical physics, however, coherent informa-
tion is expected to play a more essential role in quantum
physics. The capacity of information channels in classical
physics can be estimated, in most cases, even without relying
on any information theory, at least within an order of mag- -
nitude. This, however, is not feasible in quantum physics and time
the coherent |nf0|_’mat|0n_ concept, or a S'm'lar concept, must gy, 1. Classification of possible quantum channels connecting
be used to quantify the information capacity of the channelyyo guantum systems.-21, information is transmitted from the
An analysis of the quantum information potentially availablejntial state of the system to its final stat@; 1— 2, information is

transmitted from subsystem 1 of the system+(2) to subsystem 2

of the systen{b); 1—(1+2), information is transmitted from sub-

*Email address: zadkov@comsim1l.ilc.msu.su system 1 of the system (12) to the whole system (£2) (c).

quantum channel
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ing and quantum teleportation. . . .
The paper is organized as follows. In Sec. Il we explain Su=S(KXID=2 Surllenlk)en 4
key definitions and review the superoperator representation mn

ing sections we consider a variety of quantum channels thalomparing with the standard definition of matrix elements
correspond to the classification scheme shown in Fig. 1. Seg.,

Il discusses the coherent-information transfer between quaﬁ%—e“_ ZmSmrm-
tum states of a two-level atoffLA) in a resonant laser field

at two time instant$Fig. 1(a)]. The same type of quantum
channel (- 1) can be considered for a system that contains The entropy exchange in E¢l) for the coherent infor-
two (or more subsystems. This case is analyzed in Sec. IVmation is defined as

using a spinless model of the hydrogen atom as an example. ) R R R
Coherent-information transfer between two different quan- Se=S(pn), S(p)=-—Trplog,p, (5)
tum systems is considered in Sec. V. The analysis includes ~
coherent-information transfer betweefi) two unitary where the joint input-output density matrpx, is given, in
coupled TLAs[Fig. 1(b)], (i) two TLAs coupled via the accordance wit9,15], by

measuring procedufdig. 1(b)], (iii) an arbitrary system and

its duplication[Fig. 1(c)], (iv) a TLA in the free-space pho- ~ N/ /-

ton field [Fig. 1(b)], and (v) two TLAs via the free-space pa_iEj Spixeih@le (el ®
photon field[Fig. 1(b)]. Finally, Sec. VI concludes with a

B. The calculation of coherent information

summary of our results. Here |p;)=p/4i) are the transformed eigenvectors of the
input density matrixp;,=2p;|i)(i|; the bar symbol stands
[l. KEY DEFINITIONS AND CALCULATION TECHNIQUE for complex conjugation and is the channel input-output
A. Notations and superoperator representation technique superoperator, so that the output density maggx= Spin -

Using superoperator representati@ within the above de-

This section explains key notations and briefly reviewsg 4 eigenbasi ), the density matriX6) takes the form

the symbolic superoperator representation technidigd,
which is especially convenient for the mathematical treat- R o

ment of coherent-information transmission through a noisy pa=2 (Pip) Vs ® o)l 7
guantum channel. The most general symbolic representation 4

of a superoperator is defined by the expression -
perop y P where operators;; represent the states of the output. Both

. the input and output marginal density matrices are given by
8= su(klOl), (2)  the trace over the corresponding complementary system:

Pou=TrrPus Pn=Troup . Finally, the coherent information

where the substitution symba@) must be replaced by the (1) can be calculated, keeping in mind t1&y,= S(ﬁout)-

transforming operator variable arf#l| is an arbitrarily cho-
sen vector basis in Hilbert spakk to which the transformed 1. Two-time coherent information for two quantum systems

operators are applied. In order to correctly apply this trans- ) )
For the coherent information transfer between two quan-

formation to a density matrix, operatosg; must obey the A
o . ~ . tum systems through the quantum channels shown in Figs.
positivity condition for the block operat®= (sy) [14] and 1(b) and 1c) [1—2 or 1—(1+2)], the initial joint density

orthonormalization condition . ) - ~ o~
matrix must be taken in the product forp . ,=pi,® po,

TrSg= 3y, (3) wherep;,=p; andp, are the initial marginal density matri-
ces, the first one being an input. For thes2 quantum chan-

which provides normalization for all normalized operatprs nel. the output is the state of the second system, since a
with Trf)zl transformation on these two systems is made and a certain

Using symbolic representatiof2), one can easily repre- amount of information is transmitted into the second system

sent the production of superoperatdts,S,, which consti- from the initial state of the first one.

tutes a symbolic representation of the superoperator algebra. The dynamical evolution of the joint (42) sy_stem IS
- i ) , given by a superoperatd; , , and the corresponding chan-
For s, =|k){l| Eq.(2) results in the identity superoperathr

- . . nel transformation superoperator, which conver
and for s =|k)(k| 5—in the quantum reduction superop- herop Al

eratorR =3 |k)(k|O|k)(k|. The case oby = &y represents Spin, €aN be written as

the trace_superoperator@r which is a linear functional in S=TrS; . (O®p,),

the density-matrix space. The correspondence between the

matrix representatio=(Sp,) of the superoperataf in or-  where the trace is taken over the final state of the first sys-
thonormalized operator basg and its symbolic representa- tem. The transformation is described in terms of E).for

tion (2) is given by the joint system as
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=3 3 (fenimixp)on,  ®

where the product basfg)| «) is used and indexds « stand
for the first and second quantum systems, respectively. The

operator coefficients,, in Eq. (2) now take the form

g|<|:§ ; (NS [N K[ pal N). 9

Superoperato depends on both the dynamical transforma-
tion S, » and the initial statg,, and couples the initial state
of the first system with the final state of the second system. FIG. 2. The coherent information transmitted between the states

of the TLA at two time instants,=0 andt>0, versus timd’t and
2. One-time coherent information the Rabi frequency)/I" (both are dimensionless

One-time information quantities can be easily calculated

if the corresponding joint density matrix is known. In the U 0 0
case of a single system, the corresponding channel is de- 0O O o O
scribed by the identity superoperathr For the joint input- L=l o —-r o I’ (10
output density matrix (6), we get a pure state[)a 0 a o r

=Zilpi)lpi)Zi(p;jl(p;] and then calculate the entropy ex-
changeS,=0 and the coherent informatidg=S,,=S;,. In
the case of two systems, the input-output density matrix i

the joint density matrixp; . ,, and the corresponding coher-
ent information in system 2 on system 1 at times I .(t)
= po(t)]—Hp1s2(t)]. In the case of unitary dynamics i T Y Y]
and a pure initial state of the second system, all initial eigen- M= {0, -, = (P NTT= 40572, = (=T 40712}
stategi) of the first system transform into the corresponding

. YThese values are affected by the resonant laser field with
orthogon_al s_et[fi(_t) of the (1+2) system, so that the joint respect to the unperturbed value¥ Owhich also affects the

. - . o esonant fluorescence spectrum of the TLA.A&T/2 it
yields 1(t) = po(t) ] = S[p(0)]. If the initial state of the  yesuits in the so-called Mollow-triplet structure, centered at
first system is also a pure state, we get simplyt)  the transition frequency, which has been predicted theoreti-
=Y p,(t)]. For the TLA case, this simply yields=1 qu- cally [16] and subsequently confirmed experimentally].
bit, if a maximally entangled state of two-atom qubits is From the information point of view, the resonant laser
achieved. field might reduce the coherent-information decay rate and,
therefore, lead to the increase of information, although this
information gain could intuitively be expected only from the
laser-induced reduction of the relaxation rates of the relax-
In this section we discuss the coherent-information transation superoperatof, itself [18—21].
fer between the quantum states of a TLA in a resonant laser Calculating the matrix of the evolution superoperafor
field at two time instantpFig. 1(@)]. Such a quantum channel =exp((t) and using its corresponding representatidn the
with pure dephasing in the absence of an external field wa@int density matrix may be calculated analytical6). Then
considered iff9]. In a more general case, coherent informa-[with the help of Eqg5) and(1)], the coherent information
tion, based on the joint input-output density matf®y, can left in the TLAs state at timé about its initial state may be
be readily calculated by using the matrix representation techealculated. The initial state is chosen in the form of the maxi-
nique for the relaxation dynamics superoperator. An interestyym entropy density matrig,=1/2. The results of our cal-
ing question is how _the coherent information depends on they|ations are presented in Fig. 2. They show the typical
applied resonance field. _ threshold-type dependence of the coherent information ver-
The field changes the relaxation rates of the TLA. Theseys time, which is determined by the loss of coherence in the
rates are presented with the real parts of the eigenvaliges system. Also, the coherent information does not increase
of the dynamical LiouvillianC= L, + Lg of the TLA, where  jth an increase of the laser field intensity, as might be ex-
L, and L stand for the relaxation and field interaction Liou- pected. The coherent information even decreases as the Rabi
ville superoperators. For simplicity, we will consider here frequency increases.
relaxation caused only by pure dephasing, combined with the |n addition, the results show a singularity in the first de-
laser field interaction. The Corresponding Liouvillian matrix rivative of the coherent-information dependence at time
in the basis of,={1,03,0;,0,} reads =0, which is a characteristic feature of the starting point of

é/vherel“ is the pure dephasing ratg, is the Rabi frequency,

and 01,&2,&3 are the Pauli matrices. The eigenvalues of the
matrix (10) can be readily calculated and are given by

IlI. TLA'IN A RESONANT LASER FIELD
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the decay of coherent quantum information. Initially, thewhich can appropriately describe the coherent-information
input-output density matrix6) of the TLA is a pure state transfer between subsets of the entire system. The last term
p,=VW¥" with the input-output wave functon¥  in Eq.(11) represents the total norm preservation, if all the
=3 pi|i)]i). Its eigenvalues, and the probabilities of the States outside the outpBtset are included. In our case, these

corresponding eigenstates are all equal to zero, except for tifdates are included in the inco_herdgﬁ)f<0| form, which in
eigenstate corresponding . Due to the singularity of the contrast to the classical one-bit analog of a TLA yields no
entropy function— =\ Jog\, at A\ =0 the derivative of the Ccoherent information due to the complete destruction of the

corresponding exchange entropy also shows a logarithmigeherence. _ _ _
singularity. Considering the coherent information transmitted from

Another interesting feature of coherent information is itsPartA to partB of the system, which evolves in time, we deal
- ~ : with the channel superoperator
dependence on the initidinput) statep;,. If it were pos-
sible,f)m might be chosen in the form of the eigenoperator Sap=CpSo(t)Ca, So(t)=U(1)OU (1) (12

. 4 . with U (t) being the time evolution unitary operator. Here the
PinZIZl [Kmin) 1€ input choice superoperatal, is shown just to define the
- total channel superoperator, regardless of the input density

of the Liouville superoperators, whelie;) is the eigenvec- matrix. OthervAvlseCA is already accounted for in the input
tor corresponding to the minimum valy&e\,|>0 of the density matrixp;,, defined as the operator in the correspond-
matrix L. Yet the vector |ky, is equal to {0,  ing subspacéi, of the total Hilbert spacel.
+\T2=40?)/20,0,1}, which corresponds to the linear ~ Letus assume that the dynamical evolution of the system
space of operators with zero trace due to the zero value of tHé determined and the Bohr frequencieg and the corre-
first component. Therefore, the coherent-information decagPonding eigenstate&) are found. Then, representing the

rate cannot be reduced by reducing the corresponding dec&jojectors in terms of the corresponding inpyf) and out-
of atomic coherence. put |¢,) wave functions, Eq(12) gives the specified time

evolution form
IV. COHERENT-INFORMATION TRANSFER BETWEEN

TWO SUBSYSTEMS OF THE SAME QUANTUM Sas(H)= 2, | Si1/(1)+]0%0] X, (@mlth(1)) ik (1) @m)
SYSTEM I'eA méB
In this section we investigate the quantum chanel X(W|Or),

—1, Fig. Aa)] between two open subsysterAsand B of a
closed systemA+B having a common Hilbert space S, (1)= t (t ) )
sp(Ha,Hg), whereH, andHg are the Hilbert subspaces of 0t m,?EE Coml 1 (OX (Ol om M em){ @],
the subsystem#a andB, respectively.

In classical information theory, this situation corresponds B ot
to the transmission of paAC X of the values of an input |'//|(t)>—§k: e 'Kkl ) k). (13
random variablexe X. The situation where a receiver re-
ceives no message is also informative and meansxtbat et us consider the case of the orthogonal subsets of input/
longs to the supplement &, xe A. It can be described by output wave functions, which is of special interest. Then, if
the choicetransformationC= P+ Po(1—P,), whereP, is  there is only one common stdig¢) in the setg¢,), |¢n,) and
the projection operator fror onto the subsed, Pyx=x for ~ U(tg)=1 holds for some,, we get

xe A andPx= O (empty sexfor xe A, P, is the projection

from X onto an independent single-point 9¢§, and Pyx Sa(to) =] ) | O] b){ &|+]0)(0 2 (omlOlem),
= Xg. This transformation corresponds to the classiedlic- em* P

tion channel, resulting in information loss only Af is not a . . .

) ) = . ) which means that the quantum system is reduced into a clas-
single point. IfA is a single point, we are able t0 get a gjca) bit of the state$e) and|0) and no coherent informa-
maximum of one bit of information, foA can provide an- tion is stored in the subsysteB1 Nevertheless, if the eigen-
other point of the bit, so that for an input bit we have no lossstategk) of U(t) do not coincide with the input/output states

of information. _ _ _ |4), |omy the coherent information will increase with the
In quantum mechanics, the corresponding reduction chartime evolution. Hence, the information capacity of the chan-
nel is represented as the choice superoperator nel is determined by quantum coupling of the input and out-
o A A put.
C=PAOPA+[0){0|Tr(1—=PA)O(1—Py), (11 To illustrate the coherent-information transfer through the

quantum channel considered in this section, let us analyze a
where statd0) is a quantum analog of the classical single-typical intra-atomic channel between two two-level systems
point set, which is separate from all other states. Equatioformed of two pairs of orthogonal statés={|),| 1)} and
(11) defines a positive and trace-preserving transformation={|¢,),|,)} of the same atom. A spinless model of the
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L‘. L s 1=1 wherex=sinwg and the output density matri,iout is diag-
SL1=0 m=0m=-1 m=1 onal with the diagonal elements 1/22/2, and (1-x?)/2.
2 n="2 Calculating nonzero eigenvaluest%?)/2 of p, and the

entropiesS,;, S,, we get the coherent information
l.=[(1+x?)l0g,(1+x%) —x%log,(x?)]/2.

This function is positive except fot=0, where the coherent
information is equal to zero, and its maximum is equal to 1

n=1 qubit atx==*=1, e.g., for the precession anglet= = 7/2.
Thus coherent information on the state of the forbidden tran-

FIG. 3. A spinless model of the hydrogen atom. The informationsition is available, in principle, from a dipole transition via
channel is made of the input forbiddedm—n’l’m’ transiton ~ Stark coupling. Its time-averaged value(lg)=0.46 qubit.
100-200 and the output dipole active 100—210 transition. This forbidden transition was discussed[@2,23 as a
potential source of information on spatial symmetry breaking
caused by the weak neutral curré@,25. For example, if
I.=0, only the incoherent impact of the forbidden transition
(by means of the ground-state populatiog) remains and

In the absence of an external field, this quantum chann rovides a classical-type of _information on the interactions
transmits no coherent information, aé theOm=0 and| at cannot be ob;erved directly. In _th|s case, only one
=1m=0 states are uncoupled. In the presence of an exteparameter—popuIatlon—can be potentially _measured, while
nal electric field applied along thaxis, the considered two ©Xact knowledge of the phase of the transition demdgds
out of four initially degenerated states with=2 are split, ~
due to the Stark shift into the new eigenstal&s=(|1)
+[92))/V2,|2)= (| 1)~ |1h2))/ 2. The inputl =0 state 0s- . COHERENT-INFORMATION TRANSFER BETWEEN
cillates with the Stark shift frequency: |lﬂ1(t)> TWO QUANTUM SYSTEMS
=cos(d)|¢n)+sin(wd)|y). Therefore, due to the applied
electric field, the input state becomes coupled to the output In recent years, a few results have been published related
state, which carries the coherent information. to coherent-information transfer in a system of two TLAs,

For our model, Eq(13) presents the,, operators in the including discussion of the problem from the entanglement
form of a 3x3 matrix, where the third column and row measure viewpoinf26] and the “eavesdropping problem”
introduce the phantom “vacuum” stat@), [27]. A number of different experiments have been proposed
to study controlled entanglement between two atf@8s29|.

hydrogen atom could serve as such a systEm. 3): ¢ is
the grounds state withn=1, ¢, is the s state withl
=0,m=0 and thep-state withl =1,m=0 of the first excited
state withn=2, respectively.

100 0 sinwgt 0 From the informational point of view, the coherent-
s;=[ 0 0 0], s,=(0 0 0], information transmitted in the system of two TLAs con-
00 0 0 0 0 nected by a quantum channgl depends both on the specific
quantum channel transformation and the initial states of the
0 0 0 0 0 0 TLAs. For the latter, it seems reasonable to assume that they

can be represented by the product of the independent states
Of eaCh TLA:51+2: [A)in®;')2.

0 0 0 0 0 codwgt In this section we present a systematic treatment of the

PN coherent-information transfer between two different quantum

Zero values 0By, S, correspond to the absence of coherentgysiems. The analysis includes coherent-information transfer
information att=0 or to the absence of CoupAImg.AChoosmg between(i) two unitary coupled TLASSec. V A), (ii) two
the input matrix in the maximum entropy form,=1/2, we  TLAs coupled via the measuring procedyg&ec. V B, (iii)
get the corresponding joint input-output matrix in the form gp arbitrary system and its duplica®ec. V O, (iv) a TLA
and the free-space photon fi€lec. V D, and(v) two TLAs

S,=| sinegt 0 0 Sy=| 0 sifogt 0

1 X
3 0 0 > 0 0 coupled via the free-space photon fiégec. V B.
00000 0 A. Two unitary coupled TLAs
. 00000 0 Let us first examine a deterministic noiseless quantum
pa=| X NG , channel connecting two TLABFig. 1(b)]. Such a channel
2 00 2 0 0 can be described by the unitary two-TLA transformation,
which is defined by the matrix elementd; ;. with
00000 0 k,i,k',i"=1,2. Then, the channel transformation superopera-
000 0 O 1-x? tor S describing the transformatiop,— pou=p5y can be
2 written in terms of the substitution symbalee Eq(2)], with
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=(;32)11=O,1. As in the case of a single TLA, the behavior
of the coherent information preserves the typical threshold-
type dependency on the coupling angle, which determines
the degree of the coherent coupling of two TLAsS with re-
spect to the independent fluctuations of the second TLA.

B. Two TLAs coupled via the measuring procedure

Here we will discuss a specific type of quantum channel
connecting two TLA430], where the superoperat6ris de-
fined by themeasuring procedurenhich implements a dif-
ferent approach to the quantum informat{@i] calledmea-
sured information

We start with a channel formed of two identical two-level
FIG. 4. The coherent information transmitted between two uni-systems. In terms of wave function, the correspondirt

tary coupled TLAs versus populatiopy; of the diagonal initial ~ measurementransformation of the first TLA state is defined
density matrix of the second TLA and the coupling precession angles
Qt.

Yo o— X aldle,  a=(dily). (16)

0perators§k|=EM,,SK|,M,,|,LL)<1/|, represented by the matrix
elements ofS [in accordance with Eq&4) and (9)], in the
following form: This transformation provides full entanglement of some basis

stateg ¢;), which do not depend on the initial stateof the
S = E U U* (14) second TLA. The Iatter_serves as a measuring device,_yet
by ™ P2ap= mu ke~ my,1 8- fully preserves information on the basis states of the first
system statey=>a;|¢;). Eq. (16), being a deterministic
The relation TékIZE;LSkI,M,uzékI is valid here and ensures tra_nsformation of the wave function, is neither a linear nor
the correct normalization condition, whereas the positivity ofunitary transformation with respect to and, therefore, can-

the block matrix not represent a true deterministic transformation. The corre-
sponding representation in terms of the two-TLA density
. (:c,ll glz) matrices has the form
(s =1 . ~
S21 S22

P12 2 (bl bilpad b)) did i) bil{ bil.
ensures the positivity of. b
For the no-entanglement transformatids= U, ® U, EQs 17)

@ a['d (14) y|§ld S=p2TrO, Wh.'Ch meal.ws that the wp'ua! This representation is linear éqz and satisfies the standard
statep, of the first TLA transfers into the final state, which is conditions of physical feasibilityf10,32), i.e., completely

not entangled with the stafg=U,p,U} of the second TLA.  positive and trace preserving. This matrix is in the form of
We can simplify Eq(14) by considering a pure stafe,  =pi|#i)| ¢1){(&il(#i], so that S(p1)=S(p,). Due to the

so that together with an arbitrary choice of no-entanglementlassical nature of the information represented here only with

transformationU it seems reasonable to consider a speciathe classical indexeisand in accordance with the equations

case of the pure statps,3= 945044, AlSO keeping in mind of Sec. I, the single-instant coherent information is zero.

S, ., is Inearon th ety mai and he corrent " C25€ of s 40 dme chame, he superperty o
information| is a convex function of [10], Eq. (14) sim- q 9 y

plifies to derived from Eq(2) with Si;=| ) dul Sui» (k|— (|, and
|k)— | py). After calculating the trace over the first TLA and
_ * replacingf)lz with the substitution symbab, the equation
Skl””_zm: UmpskeagUmslaq 19 {akes the form
which means that the quantum channel is described only by
the unitary transformatioty. Here the summation is taken
over only the statefm) of the first TLA after the coupling
transformation.

M=, B,Tre0. (18)
k

. . . . Here |5k=|¢k><¢k| are the orthogonal projectors represent-
The coherelnt information t'rr;nsAmntgd n system§ of tWoing the eigenstates of the “pointer” variable of the second

umta[y coup f"d TLAS W'F ’_’i”_llz and (02)1_2 TLA and E=|¢){ ¢y is the orthogonal expansion of the

= \A/(Pz)ufl—(Pz)lﬂ is shown in Fig. 4. A convex function ynit (orthogonal mapformed of the same projectors. This

of p, is shown, which has the maximum on the border,  orthogonal map determines here the quantum-to-classical re-
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The information transfer from the initial density matrix to
the final output state is represented in E20) via the cou-
pling provided by indexesg|. Because the numbe, of g
values can be greater than Dk it seems reasonable to
suggest that some output coherent information is left about
the input state. The corresponding output and input-output
density matrices are given by

duction transformation TE,O =(|®| ), which repre-
sents the procedure of getting classical informatkofiom

the first system. Applying the transformatiét) to p;, and
using Eq.(6) for the respective output and input-output den-
sity matrices, we get

PoutIEk Pl B il Pazik: Pl P T Tl Bl
(19 Pout:% quqa Pa:% \/rpj<j|gq|i>Pq®|i><j|,

~ - _ _ (21
wherep,={ ¢l pinl d) = =ipil{ $i]i ) |? are the eigenvalues of
the reduced density matrix andr)=3Vp;/p(#li)li)  wherep,=Tr&,p;, are the state probabilities given by the
are the normalized modified input states coupled with théndirect measurement.
output state$e,) after the measurement procedure. It is im-  In the case of full indirect measurement, it can be easily
portant to notdas it follows from Eq.(19)] that there is no inferred theoretically or confirmed by numerical calculations
coherent information in the system because vedigis are  for particular examples that no coherent information is avail-
orthogonal and therefore the entropies of the density matriable. The proof is based on the quantum andldgof the
ces(19) are obviously the same. Conversely, the measuredlassical data processing theorem and the above discussed
information introduced if31] is not equal to zero in this result on a full direct measurement. Therefore, in order to get
case. nonzero coherent information, a class of incompleteft)

We can easily generalize our result for a more generameasurements must be implemented, which are subject to
case of the quantum channel, when the second system hasrre detailed quantum information analysis.
different structure from the first and, therefore, they occupy
different Hilbert spaces. This difference leads to the replace- C. Quantum duplication procedure
ment of the basis statdg;) of the second system in our
previous results with another orthogonal s$et)=V|¢;),
whereV is an isometric transformation from the Hilbert state
H, of the first system to the different Hilbert spadeg of the
second system. After simple straightforward calculations, t
final result is the same—there is no coherent informatio
transmitted through the quantum channel. This result is
natural feature of coherent information, in contrast to other . . .
information approachetsee, for example, Ref31]). P12 p1o= 2 {Gil Trap1dd &) did| i) il ;).

It is interesting to discuss more general measuring-type 1
transformations, for instance, the indirégeneralizefimea- . . . . .
surement procedure. This procedure was first applied to thi! this equation off-diagonal matrix elements of the input
problems of optimal quantum detection and measurement ifl€nsity matrixp, = p;, are taken into account, which pre-
[33] and then, in a form of nonorthogonal expansion of unitserves the phase connections between diffegent
&(d)), in [34] [£(d)) is equivalent to the positive operator-  For the initial density matrix of a product typg,® pz, in
valued measuréPOVM), used in the semiclassical version terms of p;,— p}, transformation fronH to H&H, the cor-
of quantum information and measurement theoryresponding superoperator has the form
[11,35,36]. This indirect measuring transformation results
from averaging a direct measuring transformation applied,

In Sec. V B, we demonstrated that the classical-type mea-
suring procedure defined by the transformatid?) com-
pletely destroys the coherent information transmitted through
hdhe quantum channel. Here we will consider a modified
fransformation for the quantum channel shown in Fig),1
Avhich preserves the coherent information,

not to the system of interest, but to its combination with an Q:iEJ. |¢i>|¢i><¢j|<¢i|<¢i|®|¢J>- (22
auxiliary independent system. The indirect-measurement su-
peroperator in the general form can be written as This superoperator defines the coherent measuring transfor-

mation, in contrast to the incoherent transformation dis-

M= B,TrE,0, (20 cussed |_r[3l]. 'Al'ht_a coherent measuring transformation con-
q verts p;, into a p,-independent state
herePy, are the arbit th | projectors afds th S -
whereP are the arbitrary orthogonal projectors afds the pout=P12=%‘« (dilpinl ) dd i) (Bl (i, (23

general-type nonorthogonal expansion of the unidispace

(POVM). Note that&,=|eq){ ¢4l is a specific “pure” type _ . o _ _

of POVM, first used in quantum detection and estimationwhich results in the duplication of the input eigenstafes
theory[33]. The latter describes the full measurementin into the same states of the pointer variakteS k| ¢ )( ¢y .

®H, for the singular choice of the initial auxiliary system Pure states of the input are transformed into the pure states of
density matrixps .= S0 pc - the joint (1+2) system by doubling the pointer states
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lﬂ—*E <¢I|¢>|¢I>|¢I> |2>k7»k7»
I : Lo 2

This mapping is similar to the mapping given by Ef6). Of :
course, only the input stateg equal to the chosen pointer ' |1>a M) |1>M
basis stateg, are duplicated without distortion because it is : —g I\t
impossible to transmit nonorthogonal states using only or- : ' ‘Q“ :
thogonal ones. The entropy of the output state with a density |0> |()>
matrix (23) having the same matrix elements @g is evi- ! B :
dently the same as the input staB,= S;,=S[ pin], due to Beeceseenees
the preservation of the coherence of all pure input states. A:otm s Fock states

For the joint input-output states, the transformati@g) states of the field
yields the corresponding density matrig) in HoH®H FIG. 5. Structure of the joint Hilbert space of ttetom+ field)
space, system. For the vacuum initial field state, both atomic states and

only two Fock states of the field@) and|1)) are involved in the

_ ~= dynamics of the joint systenfatomt+field). The dynamics is en-

% | #l (Al dil@ Vpebilxio(nl, (24 tirely defined by just two state$0),|1),, and|1),|0), which are
described byyy(k,\) andc,, respectively.

wherepy, |x«) are the same as above, providing an expan-
sion of the input density matrix in the formp;, field in the Fock representatidirig. 5. The problem, there-

~ o ) fore, is reduced to that of the interaction of a two-level sys-
=3Pl xi){xy/. Taking into account that the first tensor

tem with continuous multimode oscillator systefi89], a
product term in Eq.(24) is a set of transition projectors gpaific case of which is the interaction of an atom with the

Pui PP mn= 8imPkn. We can apply easily proven algebraic free photon field. However, to analyze the information in the

rules valid for a scalar functioh system(atom+ field), we do not need to consider the specific
dependence of the wave functigig(k,\) of the field photon
f( z Pu®Ry | = 2 Pu®f(R)y, on the wave \_/ectohncludmg pola_rlzz_it_lom because only its
KT KI total probability and phase are significant.

o o In the basis of the free atomic and field states for the
where R=(Ry,) is the block matrix and Ti(Z, Py ®Ry) vacuum’s initial statexo=0, we get from Eq(15)

=Trf(R). Here R=(\ppilx){xl), and it is simply

X)X with [[x))i= VP, @ vector in theHoH Saur= 2 UmusoUim 10-
space. All eigenvalues, of this matrix are equal to zero, m

except one value corresponding to the eigenveigio. Greek letters are used to distinguish the photon field indexes,

Calculation of the exchange entropy giveg=0, and, which in the general case include both the number of pho-

therefore, |;=S;,. Consequently, the coherent duplication tons and their space or momentum coordinates. Matrix ele-

:jhoes1 no;iezducﬁ the Imput :jnformf\tlorlttranimtl’;]tedt:]hrou r]nents of this superoperator calculated via the atom-to-field
e 1-( ) channel, nor does it matter whether the reg- unitary evolution matrixU,, o coefficients(Table | are

ister k is compatible with the input density matrikk,pin]  shown in Table II.

=0, or not. . o The choice ofiyy(k,\) as a basis for the photon fiefd0]
If the channel is reduced to the one shown in Fi®) Bnd  reduces the matrix of operat§ ,, to the nonoperator ma-

dlscu_ssed in Sec. VB, by taking in E@S)_trace either over trix transformation, which in terms of,; matrices has the
the first or the second system, we evidently come to th

measurement procedure discussed in Sec. V B. As a result,
we can conclude that the coherent information is strictly as-
sociated with the joint system but not with its subsystemsU

This natural property could be used in quantum error correcstand for atomic quanta ang,a—for the number of photons. The
tion algorithms[37] or for producing stable entangled states|ong.dashed symbol stays for the elements not involved into the

TABLE I. Unitary (atom+field) to (atont-field) transformation
. for the vacuum initial photon-field state, where indere&

[38]. calculated termss,, ,,, (Table 1.
D. TLA-to-vacuum field channel mu 00 01 10 11
. . k
In this section we analyze the quantum channel between a
TLA and a vacuum electromagnetic figlBig. 1(b)], which 00 1 0 0 0
is an extension of the TLA in an external laser field, as 01 — — — —
considered in Sec. Ill. 10 0 Wo(k,\) o 0

For this analysis, we will use a reduced model of the field, 11
which is based on the reduction of the Hilbert space of the
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7 N ' FIG. 6. The coherent informa-
TR l tion transmitted in the atom-to-

field quantum channel versus the
dimensionless timeyt and input
atomic density matrix, which is
taken either diagonal with the
ground-state matrix elemeni;
(@) or as the sum of/2 and the
real (“cosine-type”) coherent
contribution of the off-diagonal
elementsp;,0; (b).

I, (qubit)

R 1 0 R 0 (1l-e M2 =0,1 were taken into accounteads to the conclusion that
S11= ( 0 0), S1o= ( 0 0 ) the photon states also are equivalent to those of a two-level
system.
0 0 ot 0 ' Applyi.ng the transformatiori25) to the input atom den-
é21:( —yty1/2 )’ é22:( -yt Sity matrix
(1-e™ ™) 0 0 1-e7
(25) ,3 _(pll P12 )
n ’
where|c,|?>=exp(— 1) describes the population decay of the Pz 1=pn

totally populated initial excited state of the atom andyestricted to the real off-diagonal matrix elements, we get the
J=[4ho(k,\)|*dk=1—exp(—) is the probability a photon  qutput density matrix

will be detected. From Eq25), it follows that the structure

of the photon field plays no role, and the transmitted infor- . putpze " pil—e M2

mation defined by the input-output density matrix depends Pout™ pl—e M2 o 1-e N

only on the photon emission probability by tinheThe re-

duction of the photon fieldonly the photon numberg,»  and forp,,=0 the respective input-output density matrix

P11 0 0 [prpo(l—e ")]H2
R 0 pae” " 0 0
Pa™ 0 0 o0 0

[p11paA1—e"")]Y2 0 0 pal—e ")

Fort—c this expression yields a pure atom-photon stateyalues are\ ,={0,0,1— p,.xp(— 1),p2.eXp(— 1)}. Nonzero
which converts incoherent fluctuations of the atomic statesyalues are equal to the probabilities of the atomic states at

forming the incoherent ensemble, to equivalent coherenfet For the outputphoton density matrixp,,, the eigen-
fluctuations of the photon states. The corresponding eigeq,—ames areN ou={pad 1 — exp=1m)1,1- pof 1—exp= W1
u ’ 1

TABLE Il. Atom-to-field transformationS,, ,,, which defines which are the probqbility that a photop will be. emitted or”
[K)(I|—| w){v| superoperator transformation. Indexes stand for ~ NOt. These sets of eigenvalues determine the eigenprobabili-

atomic quanta ang, »—for the number of photons. ties of the joint input-output and marginal output matrices.
The coherent information, defined by the difference of the
uv 00 01 10 11 corresponding entropies, then takes the form
kl
I c=Xp22l0Ga(Xp22) = (1= paotXp22)0go[ 1= (1—X) p2s]
00 1 0 0 0
01 0 0 Po(k,\) 0 +(1-Xp22)1002(1—Xp22) = (1—X) p22l0Ga(p22—Xp22),
10 0 yg(k\) 0 0 (26)
11 |cal? 0 0 Po(k, N g (K \')

wherex=exp(— ). This formula is valid forl .>0, other-
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wise, |,=0. The corresponding critical point is expft) In terms of the products of the individual atomic states
=1/2, the time when the probability-1p, 1—exp(—yt)]of  |}lj) for the corresponding initial amplitudes;(0)=0,
finding no photon is equal to the population of the lowerC20)=0 the system’s dynamics is described, according to
atomic state I p,.exp(— ). the Dicke dynamic$27), by the following equations:

The results for calculating the coherent information are _ 0 _
shown in Fig. 6 for two specific casgs;,=0 [Fig. 6(@] and Cia(t) =c11(0) + f(1)e'*cy1(0),  Cop(t) =F(1)Cp1(0),

p11=1/2, 0<p,,<1/2 [Fig. 6(b)]. One can see from Fig. —f _
6(a) that the coherent information is symmetrical with re- Ciat) =Fa(t)Cc1(0), Coo(t)=0,
spect to the populatiop;; around the symmetry poin;; f(6)={1—[exp(— y<) + exp — ya1) 112} 2,

=1/2. Increasing the excited-state populatippp=1—pq;

and the corresponding photon emission yield does not in- ¢ (t)={fexq — (y4/2+iA)t]+exd — (ya/2—iA)t]}H2,
crease the coherent information, because of the reduction of

the source entropy, which determines the potential maximum fo(t)={exd — (ys/2+iA)t]—exd — (y./2—i A)t]}2.

value of the coherent information. For the same reason, the

coherent information decreases when there is a nonzero cépplying these formulas to the input operators
herent contribution to the initial maximum entropy atom c,,(0)cf;(0)|k){l| of the first atom and then averaging the
state and completely vanishes for the pure coherent initiabutput over the final states of the first atom and the field
state[Fig. 6(b)]. fluctuationgthe latter is represented here only wittt) ], we

. -l-nla:c-cﬁgrdance with 'Sec.lllfand because of tlhe plrllrit)é_?ff theyet the symbolic channel superoperator transformation
initial field state, one-time information Is equal to the differ- (1) 5y_, ~(2)(ty = ~(1) [ _
ence of the entropies of the photon field only, represented b rs(?n) thg fo(r:l)1 5(t)p(0) and corresponding opera
pout» @nd the initial atomic state, represented dy. For a

pure initial state, expressed in the form of the excited atom S(t)=|1)(1|O[1)(1]|+[f(t)%+]|f4(t)|?]|1)(2|O]2)

state|2), and for 0<t<, we always get nonzero informa-

tion I.=—xlogyx—(1—x)log,(1—Xx) that yields 1 qubit for X (1 [fa(D]%2)(21012)(2]+ fa(1]2)(2|0]1)
x=1/2, when the excited state population is equal to the X (1] + 5 (0)[10(1|O]2)(2],

probability a photon will be emitted.

. 10 . 0 fx(t)
E. The transmission of coherent information between two Su= ( 0 0) v S127 0 0o /'
atoms via a free-space field
In this section we will consider the quantum channel . 0 0 . f(t)%+|f(t)]? 0
when information is transmitted from one atom to another 5217 |¢ () o) 5227 0 1f.0)[2)
via the free-space fielgFig. 1(b)]. Suppose that the second 2 2 (28)

atom is initially in the ground state. In addition, we will

restrict ourselves here to the long time scale approximation, To further elucidate this problem, let us now discuss the
in which the effects of the discrete nature of the retardingcase of two identical atoms having parallel dipole moments
electromagnetic interaction are neglectetl-44. Under aligned perpendicular to the vector connecting the atoms.
such restrictions and approximations we have the Dickadere only two-dimensionless parameters are essential: di-
problem [45], for which the well-known solution for the mensionless timet, wherevy is the free atom’s decay rate,
atomic state in the form of two decaying symmetric andand dimensionless distance=KkyR, whereR is the inter-
antisymmetric Dicke statefs)=(|1)|2)+]2)|1))/\2, |a)  atomic distance ank, is the wave vector at the atomic fre-
:(|1>|2>_|2>|1>)/\/§ and the stable vacuum staté) quency. Then, the dimensionless two-atomic decay rates and

=|1)|1) can be written as the short distance dipole-dipole shift are given[B9,38,44
co(t)=cy(0)exd — (ys/2+iA)t], Ysaly=1=g and Aly=(3/4)/¢
_ respectively, withg=(3/2) (¢~ sine+¢ 2cose—¢ 3sing).
Ca(t)=ca(0)exd — (yal2-iA)t], The coherent information may be calculated as previously
_ described in Sec. VD by replacing expft) with f(t)?
Co(t) =Co(0) +[cs(0)?+Ca(0)?—cg(t) 2~ cy(t) 2] 20, +|f4(t)|? in Eq. (25). Then, the operators,, in Eq. (25)

27 become similar to the corresponding operators in 28§).
The coherent information is given by the same &%) with

Herecy(t) is the amplitude of the stable vacuum componentx= f(t)2+|f4(t)|?, which, however, now hagn contrast to
|1)|1), which has an incoherent contribution due to the spona single-atom case considered in ¥ Bew qualitative fea-
taneous radiation transitions from the excited two-atomidures arising from the specific oscillatory dependence of
states £(t) is the homogeneously distributed random phase|fs ,(t)|? on the interatomic distance.
vsa and A are their decay rate and coupling shift, respec- If there were no oscillations from the quasielectrostatic
tively, andcs , are the amplitudes of the Dicke states. dipole-dipole coupling, i.e., as in the case &0, the co-
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’ = FIG. 7. Excited-state popula-
‘\«.‘l‘l‘“\lrl" tion of the second atonta) and
nl\.l‘"llll}.“ ' the coherent informatiorib) in a

1\,"‘l'|1\|l\‘|‘ system of two atoms interacting

\\1|\||, ’ via the free-space field versus
\\\\W time yt and the interatomic dis-
tancegp= wyR/c (both are dimen-
sionles$. The input density matrix
is diagonal with the ground-state
matrix elementp,,=1/2.
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herent information would always be equal to zero, because As an example of information transmission between the
the thresholdx<<0.5 would not be achieved. Parameter (1 subsystems of a whole system, the hydrogen atom was con-
—X) corresponds to the population of the excited state of thaidered. The coherent information in the atom was shown to
second atom for the initial stat@) of the first atom, and for transfer from the forbidden atomic transition to the dipole
the optimal valuep,,= 1/2 of its initial population(from the  active transition in an external electric field, due to coupling
information point of view, we have I-x<1/4 andx=3/4.  through Stark splitting.

Oscillations in|f,(t)|? lead to the interference between the  For two unitary coupled TLAs, the maximum valig

two decaying Dicke components, so that the maximum of the=1 qubit of the coherent information was shown to be
populationn,=1—x goes to the larger values, maximally up achieved for a complete unitary entanglement of two TLAs
to n,=1, and the coherent information becomes a nonzerandl.=0, for any kind of measuring procedure discussed in
value. Sec. VB.

Functionsn,(¢,yt) and I (¢, yt), calculated with Eq. For the information exchange between a TLA and a free-
(26), are shown in Fig. 7. For the considered geometry, theyspace vacuum photon field via spontaneous emission, the
serve as the universal measures for a system of two atont®herent information was shown to reach a nonzero value at
independent of their frequency or dipole moments. the threshold point of the decay exponent expl) equal to

As can be seen from Fig.(d), the population decreases 1/2, when the probability of finding no photon is equal to the
rapidly versus time because of the decay of the short-liveghopulation of the lower atomic state. At its maximum, the
Dicke component. Both the population and the coherent ineoherent information can reach the valuel gf 1 qubit.
formation[Fig. 7(b)] show strong oscillations at smaller in- For the information transfer between two atoms via
teratomic distanceg. At ¢—0 the long-lived Dicke state vacuum field, when the atoms are located at a distance of the
yields an essential population even at infinitely long times,order of their transition wavelength, the coherent information
but it does not yield any coherent information after the totalwas shown to be a nonzero value, only because of the coher-

decay of the other short-lived Dicke state. ent oscillations of the Dicke states, which originate from the
dipole-to-dipole short distance electrostaticlikel/R® inter-
VI. CONCLUSIONS action. In contrast, the semiclassical information received

) ) ~ from the quantum detection procedure results from the popu-
In this paper we have shown that the coherent-informationation correlationg38].

concept can be used effectively to quantify the interaction
between two real quantum systems, which in the general

case may have essentially different Hilbert spaces, aqd_ to ACKNOWLEDGMENTS
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