
ia

PHYSICAL REVIEW A, VOLUME 62, 032303
Coherent-information analysis of quantum channels in simple quantum systems
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International Laser Center and Department of Physics, M. V. Lomonosov Moscow State University, 119899 Moscow, Russ

~Received 18 January 2000; published 10 August 2000!

The coherent-information concept is used to analyze a variety of simple quantum systems. Coherent infor-
mation was calculated for the information decay in a two-level atom in the presence of an external resonant
field, for the information exchange between two coupled two-level atoms, and for the information transfer from
a two-level atom to another atom and to a photon field. The coherent information is shown to be equal to zero
for all full-measurement procedures, but it completely retains its original value for quantum duplication.
Transmission of information from one open subsystem to another one in the entire closed system is analyzed
to learn quantum information about the forbidden atomic transition via a dipole active transition of the same
atom. It is argued that coherent information can be used effectively to quantify the information channels in
physical systems where quantum coherence plays an important role.

PACS number~s!: 03.67.Hk, 03.65.Bz, 89.70.1c
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I. INTRODUCTION

The concept of a noisy quantum channel may be use
many information-carrying applications, such as quant
communication, quantum cryptography, and quantum co
puters@1#. Shannon’s theory of information@2–5# is a purely
classical one and cannot be applied to quantum mecha
systems. Therefore, much recent work has been done
quantum analogs of the Shannon theory@6–11#. The coher-
ent informationintroduced in@7,9# is suggested to be analo
gous to the concept ofmutual informationin classical infor-
mation theory. It is defined by

I c5Sout2Se , ~1!

whereSout is the entropy of the information channel outp
andSe is theentropy exchange@6,9# taken from the channe
reservoir. If Sout2Se.0, then, expressed inqubits, I c de-
scribes a binary logarithm of the Hilbert space dimension,
states of which are transmitted with the probabilityp51 in
the limit of infinitely large ergodic ensembles. Otherwise,
set I c50.

The validity of the coherent information concept w
proved in@9,10#, and it was used successfully for quantifyin
the resources needed to perform physical tasks. Coheren
formation is expected to be as universal as its classical
log, Shannon information, and it characterizes a quan
information channel regardless of the nature of both quan
information and quantum noise. In contrast to Shannon
formation in classical physics, however, coherent inform
tion is expected to play a more essential role in quant
physics. The capacity of information channels in classi
physics can be estimated, in most cases, even without rel
on any information theory, at least within an order of ma
nitude. This, however, is not feasible in quantum physics
the coherent information concept, or a similar concept, m
be used to quantify the information capacity of the chann
An analysis of the quantum information potentially availab
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in physical systems is especially important for planning e
periments in new fields of physics, such as quantum com
tations, quantum communications, and quantum cryptog
phy @1,11#, where the coherent information of the quantu
channel determines its potential efficiency.

In this paper, we apply the coherent-information conc
to an analysis of the quantum information exchange betw
two systems, which in general may have essentially differ
Hilbert spaces. For this purpose, we must specify the no
quantum information channel and its corresponding supe
eratorS, which transforms the initial state of the first syste
into the final state of another system. A classification sche
for possible quantum channels connecting two quantum
tems is shown in Fig. 1@12#. In addition to the two-time
channels shown in the figure, we consider also their one-t
analogs. Two-time quantum channels are widely used
quantum communications and measurements, whereas
time quantum channels are appropriate for quantum com

FIG. 1. Classification of possible quantum channels connec
two quantum systems. 1→1, information is transmitted from the
initial state of the system to its final state~a!; 1→2, information is
transmitted from subsystem 1 of the system (112) to subsystem 2
of the system~b!; 1→(112), information is transmitted from sub
system 1 of the system (112) to the whole system (112) ~c!.
©2000 The American Physical Society03-1
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B. A. GRISHANIN AND V. N. ZADKOV PHYSICAL REVIEW A 62 032303
ing and quantum teleportation.
The paper is organized as follows. In Sec. II we expl

key definitions and review the superoperator representa
technique, which is used throughout the paper. In the follo
ing sections we consider a variety of quantum channels
correspond to the classification scheme shown in Fig. 1. S
III discusses the coherent-information transfer between qu
tum states of a two-level atom~TLA ! in a resonant laser field
at two time instants@Fig. 1~a!#. The same type of quantum
channel (1→1) can be considered for a system that conta
two ~or more! subsystems. This case is analyzed in Sec.
using a spinless model of the hydrogen atom as an exam
Coherent-information transfer between two different qu
tum systems is considered in Sec. V. The analysis inclu
coherent-information transfer between~i! two unitary
coupled TLAs @Fig. 1~b!#, ~ii ! two TLAs coupled via the
measuring procedure@Fig. 1~b!#, ~iii ! an arbitrary system and
its duplication@Fig. 1~c!#, ~iv! a TLA in the free-space pho
ton field @Fig. 1~b!#, and ~v! two TLAs via the free-space
photon field@Fig. 1~b!#. Finally, Sec. VI concludes with a
summary of our results.

II. KEY DEFINITIONS AND CALCULATION TECHNIQUE

A. Notations and superoperator representation technique

This section explains key notations and briefly revie
the symbolic superoperator representation technique@13#,
which is especially convenient for the mathematical tre
ment of coherent-information transmission through a no
quantum channel. The most general symbolic representa
of a superoperator is defined by the expression

S5( ŝkl^ku(u l &, ~2!

where the substitution symbol( must be replaced by th
transforming operator variable and^ku is an arbitrarily cho-
sen vector basis in Hilbert spaceH, to which the transformed
operators are applied. In order to correctly apply this tra
formation to a density matrix, operatorsŝkl must obey the
positivity condition for the block operatorŜ5( ŝkl) @14# and
orthonormalization condition

Tr ŝkl5dkl , ~3!

which provides normalization for all normalized operatorsr̂

with Tr r̂51.
Using symbolic representation~2!, one can easily repre

sent the production of superoperatorsS1 ,S2, which consti-
tutes a symbolic representation of the superoperator alge
For ŝkl5uk&^ l u Eq. ~2! results in the identity superoperatorI,
and for ŝkl5uk&^kudkl—in the quantum reduction superop
eratorR5(uk&^ku(uk&^ku. The case ofŝkl5dkl represents
the trace superoperator Tr(, which is a linear functional in
the density-matrix space. The correspondence between
matrix representationS5(Smn) of the superoperatorS in or-
thonormalized operator basisêk and its symbolic representa
tion ~2! is given by
03230
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ŝkl5S~ uk&^ l u!5(
mn

Smn̂ l uênuk&êm ~4!

and can be easily checked by substituting it in Eq.~2! and
comparing with the standard definition of matrix elemen
Sên5(mSmnêm .

B. The calculation of coherent information

The entropy exchange in Eq.~1! for the coherent infor-
mation is defined as

Se5S~ r̂a!, S~ r̂ !52Tr r̂ log2r̂, ~5!

where the joint input-output density matrixr̂a is given, in
accordance with@9,15#, by

r̂a5(
i j

S~ ur i&^r j u! ^ ur̄ i&^r̄ j u. ~6!

Here ur i&5 r̂ in
1/4u i & are the transformed eigenvectors of t

input density matrixr̂ in5(pi u i &^ i u; the bar symbol stands
for complex conjugation andS is the channel input-outpu
superoperator, so that the output density matrixr̂out5Sr̂ in .
Using superoperator representation~2! within the above de-
fined eigenbasisu i &, the density matrix~6! takes the form

r̂a5(
i j

~pipj !
1/4ŝi j ^ ur̄ i&^r̄ j u, ~7!

where operatorsŝi j represent the states of the output. Bo
the input and output marginal density matrices are given
the trace over the corresponding complementary syst

r̂out5Trinr̂a , r̂̄ in5Troutr̂a . Finally, the coherent information
~1! can be calculated, keeping in mind thatSout5S( r̂out).

1. Two-time coherent information for two quantum systems

For the coherent information transfer between two qu
tum systems through the quantum channels shown in F
1~b! and 1~c! @1→2 or 1→(112)#, the initial joint density
matrix must be taken in the product formr̂1125 r̂ in^ r̂2,
wherer̂ in5 r̂1 and r̂2 are the initial marginal density matri
ces, the first one being an input. For the 1→2 quantum chan-
nel, the output is the state of the second system, sinc
transformation on these two systems is made and a ce
amount of information is transmitted into the second syst
from the initial state of the first one.

The dynamical evolution of the joint (112) system is
given by a superoperatorS112 and the corresponding chan
nel transformation superoperator, which convertsr̂out

5Sr̂ in , can be written as

S5Tr1S112~( ^ r̂2!,

where the trace is taken over the final state of the first s
tem. The transformation is described in terms of Eq.~2! for
the joint system as
3-2
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S5 (
kk ll

(
n

^nuŝkk,llun&^kur̂2ul&^ku(u l &, ~8!

where the product basisuk&uk& is used and indexesk, k stand
for the first and second quantum systems, respectively.
operator coefficientsŝkl in Eq. ~2! now take the form

ŝkl5(
kl

(
n

^nuŝkk,llun&^kur̂2ul&. ~9!

SuperoperatorS depends on both the dynamical transform
tion S112 and the initial stater̂2, and couples the initial stat
of the first system with the final state of the second syste

2. One-time coherent information

One-time information quantities can be easily calcula
if the corresponding joint density matrix is known. In th
case of a single system, the corresponding channel is
scribed by the identity superoperatorI. For the joint input-
output density matrix ~6!, we get a pure stater̂a
5( i ur i&ur i&( j^r j u^r j u and then calculate the entropy e
changeSe50 and the coherent informationI c5Sout5Sin . In
the case of two systems, the input-output density matrix
the joint density matrixr̂112, and the corresponding cohe
ent information in system 2 on system 1 at timet is I c(t)
5S@ r̂2(t)#2S@ r̂112(t)#. In the case of unitary dynamic
and a pure initial state of the second system, all initial eig
statesu i & of the first system transform into the correspondi
orthogonal setC i(t) of the (112) system, so that the join
entropy is time independent and the coherent informa
yields I c(t)5S@ r̂2(t)#2S@ r̂1(0)#. If the initial state of the
first system is also a pure state, we get simplyI c(t)
5S@ r̂2(t)#. For the TLA case, this simply yieldsI c51 qu-
bit, if a maximally entangled state of two-atom qubits
achieved.

III. TLA IN A RESONANT LASER FIELD

In this section we discuss the coherent-information tra
fer between the quantum states of a TLA in a resonant la
field at two time instants@Fig. 1~a!#. Such a quantum channe
with pure dephasing in the absence of an external field
considered in@9#. In a more general case, coherent inform
tion, based on the joint input-output density matrix~6!, can
be readily calculated by using the matrix representation te
nique for the relaxation dynamics superoperator. An inter
ing question is how the coherent information depends on
applied resonance field.

The field changes the relaxation rates of the TLA. The
rates are presented with the real parts of the eigenvaluelk
of the dynamical LiouvillianL5Lr1LE of the TLA, where
Lr andLE stand for the relaxation and field interaction Lio
ville superoperators. For simplicity, we will consider he
relaxation caused only by pure dephasing, combined with
laser field interaction. The corresponding Liouvillian matr
in the basis ofêk5$ Î ,ŝ3 ,ŝ1 ,ŝ2% reads
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L5S 0 0 0 0

0 0 0 V

0 0 2G 0

0 2V 0 2G

D , ~10!

whereG is the pure dephasing rate,V is the Rabi frequency,
andŝ1 ,ŝ2 ,ŝ3 are the Pauli matrices. The eigenvalues of t
matrix ~10! can be readily calculated and are given by

lk5$0,2G,2~G1AG224V2!/2,2~G2AG224V2!/2%.

These values are affected by the resonant laser field
respect to the unperturbed values 0,G, which also affects the
resonant fluorescence spectrum of the TLA. AtV.G/2 it
results in the so-called Mollow-triplet structure, centered
the transition frequency, which has been predicted theor
cally @16# and subsequently confirmed experimentally@17#.

From the information point of view, the resonant las
field might reduce the coherent-information decay rate a
therefore, lead to the increase of information, although t
information gain could intuitively be expected only from th
laser-induced reduction of the relaxation rates of the rel
ation superoperatorLr itself @18–21#.

Calculating the matrix of the evolution superoperatorS
5exp(Lt) and using its corresponding representation~2!, the
joint density matrix may be calculated analytically~6!. Then
@with the help of Eqs~5! and ~1!#, the coherent information
left in the TLAs state at timet about its initial state may be
calculated. The initial state is chosen in the form of the ma
mum entropy density matrixr̂05 Î /2. The results of our cal-
culations are presented in Fig. 2. They show the typi
threshold-type dependence of the coherent information
sus time, which is determined by the loss of coherence in
system. Also, the coherent information does not incre
with an increase of the laser field intensity, as might be
pected. The coherent information even decreases as the
frequency increases.

In addition, the results show a singularity in the first d
rivative of the coherent-information dependence at timt
50, which is a characteristic feature of the starting point

FIG. 2. The coherent information transmitted between the st
of the TLA at two time instants,t50 andt.0, versus timeGt and
the Rabi frequencyV/G ~both are dimensionless!.
3-3
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B. A. GRISHANIN AND V. N. ZADKOV PHYSICAL REVIEW A 62 032303
the decay of coherent quantum information. Initially, t
input-output density matrix~6! of the TLA is a pure state
r̂a5CC1 with the input-output wave functionC
5(Api u i &u i &. Its eigenvalueslk and the probabilities of the
corresponding eigenstates are all equal to zero, except fo
eigenstate corresponding toC. Due to the singularity of the
entropy function2(lkloglk at lk50 the derivative of the
corresponding exchange entropy also shows a logarith
singularity.

Another interesting feature of coherent information is
dependence on the initial~input! state r̂ in . If it were pos-
sible, r̂ in might be chosen in the form of the eigenoperat

r̂ in5(
l 51

4

ukmin& l êl

of the Liouville superoperators, whereukmin& is the eigenvec-
tor corresponding to the minimum valueuRelku.0 of the
matrix L. Yet the vector ukmin& is equal to $0,(G
1AG224V2)/2V,0,1%, which corresponds to the linea
space of operators with zero trace due to the zero value o
first component. Therefore, the coherent-information de
rate cannot be reduced by reducing the corresponding d
of atomic coherence.

IV. COHERENT-INFORMATION TRANSFER BETWEEN
TWO SUBSYSTEMS OF THE SAME QUANTUM

SYSTEM

In this section we investigate the quantum channel@1
→1, Fig. 1~a!# between two open subsystemsA andB of a
closed systemA1B having a common Hilbert spac
sp(HA ,HB), whereHA andHB are the Hilbert subspaces o
the subsystemsA andB, respectively.

In classical information theory, this situation correspon
to the transmission of partA,X of the values of an inpu
random variablexPX. The situation where a receiver re
ceives no message is also informative and means thatx be-
longs to the supplement ofA, xPĀ. It can be described by
the choicetransformationC5PA1P0(12PA), wherePA is
the projection operator fromX onto the subsetA, PAx5x for
xPA andPAx5O” ~empty set! for xPĀ, P0 is the projection
from X onto an independent single-point setX0, and P0x
5X0. This transformation corresponds to the classicalreduc-

tion channel, resulting in information loss only ifĀ is not a
single point. If Ā is a single point, we are able to get
maximum of one bit of information, forĀ can provide an-
other point of the bit, so that for an input bit we have no lo
of information.

In quantum mechanics, the corresponding reduction ch
nel is represented as the choice superoperator

C5 P̂A( P̂A1u0&^0uTr~12 P̂A!(~12 P̂A!, ~11!

where stateu0& is a quantum analog of the classical sing
point set, which is separate from all other states. Equa
~11! defines a positive and trace-preserving transformat
03230
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which can appropriately describe the coherent-informat
transfer between subsets of the entire system. The last
in Eq. ~11! represents the total norm preservation, if all t
states outside the outputB set are included. In our case, the
states are included in the incoherentu0&^0u form, which in
contrast to the classical one-bit analog of a TLA yields
coherent information due to the complete destruction of
coherence.

Considering the coherent information transmitted fro
partA to partB of the system, which evolves in time, we de
with the channel superoperator

SAB5CBS0~ t !CA , S0~ t !5U~ t !(U21~ t ! ~12!

with U(t) being the time evolution unitary operator. Here t
input choice superoperatorCA is shown just to define the
total channel superoperator, regardless of the input den
matrix. Otherwise,CA is already accounted for in the inpu
density matrixr̂ in , defined as the operator in the correspon
ing subspaceHA of the total Hilbert spaceH.

Let us assume that the dynamical evolution of the sys
is determined and the Bohr frequenciesvk and the corre-
sponding eigenstatesuk& are found. Then, representing th
projectors in terms of the corresponding inputuc l& and out-
put uwm& wave functions, Eq.~12! gives the specified time
evolution form

SAB~ t !5 (
l l 8PA

F ŝl l 8~ t !1u0&^0u (
mP” B

^wmuc l~ t !&^c l 8~ t !uwm&G
3^c l u(uc l 8&,

ŝl l 8~ t !5 (
mm8PB

^wmuc l~ t !&^c l 8~ t !uwm8&uwm&^wm8u,

uc l~ t !&5(
k

e2 ivkt^kuc l&uk&. ~13!

Let us consider the case of the orthogonal subsets of in
output wave functions, which is of special interest. Then
there is only one common stateuf& in the setsuc l&, uwm& and
U(t0)51 holds for somet0, we get

SAB~ t0!5uf&^fu(uf&^fu1u0&^0u (
wmÞf

^wmu(uwm&,

which means that the quantum system is reduced into a c
sical bit of the statesuf& and u0& and no coherent informa
tion is stored in the subsystemB. Nevertheless, if the eigen
statesuk& of U(t) do not coincide with the input/output state
uc l&, uwm& the coherent information will increase with th
time evolution. Hence, the information capacity of the cha
nel is determined by quantum coupling of the input and o
put.

To illustrate the coherent-information transfer through t
quantum channel considered in this section, let us analy
typical intra-atomic channel between two two-level syste
formed of two pairs of orthogonal statesA5$uc0&,uc1&% and
B5$uc0&,uc2&% of the same atom. A spinless model of th
3-4
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COHERENT INFORMATION ANALYSIS OF QUANTUM . . . PHYSICAL REVIEW A62 032303
hydrogen atom could serve as such a system~Fig. 3!: c0 is
the grounds state with n51, c1,2 is the s state with l
50,m50 and thep-state withl 51,m50 of the first excited
state withn52, respectively.

In the absence of an external field, this quantum chan
transmits no coherent information, as thel 50,m50 and l
51,m50 states are uncoupled. In the presence of an ex
nal electric field applied along theZ axis, the considered two
out of four initially degenerated states withn52 are split,
due to the Stark shift into the new eigenstatesu1&5(uc1&
1uc2&)/A2,u2&5(uc1&2uc2&)/A2. The inputl 50 state os-
cillates with the Stark shift frequency: uc1(t)&
5cos(vst)uc1&1sin(vst)uc2&. Therefore, due to the applie
electric field, the input state becomes coupled to the ou
state, which carries the coherent information.

For our model, Eq.~13! presents theŝkl operators in the
form of a 333 matrix, where the third column and row
introduce the phantom ‘‘vacuum’’ stateu0&,

ŝ115S 1 0 0

0 0 0

0 0 0
D , ŝ125S 0 sinvst 0

0 0 0

0 0 0
D ,

ŝ215S 0 0 0

sinvst 0 0

0 0 0
D , ŝ225S 0 0 0

0 sin2vst 0

0 0 cos2vst
D .

Zero values ofŝ12,ŝ21 correspond to the absence of cohere
information att50 or to the absence of coupling. Choosin
the input matrix in the maximum entropy formr̂ in5 Î /2, we
get the corresponding joint input-output matrix in the form

r̂a51
1

2
0 0

x

2
0 0

0 0 0 0 0 0

0 0 0 0 0 0

x

2
0 0

x2

2
0 0

0 0 0 0 0 0

0 0 0 0 0
12x2

2

2 ,

FIG. 3. A spinless model of the hydrogen atom. The informat
channel is made of the input forbiddennlm→n8l 8m8 transition
100–200 and the output dipole active 100–210 transition.
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wherex5sinvst and the output density matrixr̂out is diag-
onal with the diagonal elements 1/2,x2/2, and (12x2)/2.

Calculating nonzero eigenvalues (16x2)/2 of r̂a and the
entropiesSout, Sa , we get the coherent information

I c5@~11x2!log2~11x2!2x2log2~x2!#/2.

This function is positive except forx50, where the coheren
information is equal to zero, and its maximum is equal to
qubit at x561, e.g., for the precession anglevst56p/2.
Thus coherent information on the state of the forbidden tr
sition is available, in principle, from a dipole transition v
Stark coupling. Its time-averaged value is^I c&50.46 qubit.

This forbidden transition was discussed in@22,23# as a
potential source of information on spatial symmetry break
caused by the weak neutral current@24,25#. For example, if
I c50, only the incoherent impact of the forbidden transiti
~by means of the ground-state populationn0) remains and
provides a classical-type of information on the interactio
that cannot be observed directly. In this case, only o
parameter—population—can be potentially measured, w
exact knowledge of the phase of the transition demandI c
51.

V. COHERENT-INFORMATION TRANSFER BETWEEN
TWO QUANTUM SYSTEMS

In recent years, a few results have been published rel
to coherent-information transfer in a system of two TLA
including discussion of the problem from the entanglem
measure viewpoint@26# and the ‘‘eavesdropping problem’
@27#. A number of different experiments have been propos
to study controlled entanglement between two atoms@28,29#.
From the informational point of view, the coheren
information transmitted in the system of two TLAs co
nected by a quantum channel depends both on the spe
quantum channel transformation and the initial states of
TLAs. For the latter, it seems reasonable to assume that
can be represented by the product of the independent s
of each TLA: r̂1125 r̂ in^ r̂2.

In this section we present a systematic treatment of
coherent-information transfer between two different quant
systems. The analysis includes coherent-information tran
between~i! two unitary coupled TLAs~Sec. V A!, ~ii ! two
TLAs coupled via the measuring procedure~Sec. V B!, ~iii !
an arbitrary system and its duplicate~Sec. V C!, ~iv! a TLA
and the free-space photon field~Sec. V D!, and~v! two TLAs
coupled via the free-space photon field~Sec. V E!.

A. Two unitary coupled TLAs

Let us first examine a deterministic noiseless quant
channel connecting two TLAs@Fig. 1~b!#. Such a channe
can be described by the unitary two-TLA transformatio
which is defined by the matrix elementsUki,k8 i 8 with
k,i ,k8,i 851,2. Then, the channel transformation superope
tor S describing the transformationr̂ in→ r̂out5 r̂28 can be
written in terms of the substitution symbol@see Eq.~2!#, with
3-5
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B. A. GRISHANIN AND V. N. ZADKOV PHYSICAL REVIEW A 62 032303
operatorsŝkl5(mnSkl,mnum&^nu, represented by the matri
elements ofS @in accordance with Eqs~4! and ~9!#, in the
following form:

Skl,mn5 (
mab

r2abUmm,kaUmn,lb* . ~14!

The relation Trŝkl5(mSkl,mm5dkl is valid here and ensure
the correct normalization condition, whereas the positivity
the block matrix

~ ŝkl!5S ŝ11 ŝ12

ŝ21 ŝ22
D

ensures the positivity ofS.
For the no-entanglement transformationU5U1^ U2, Eqs

~2! and ~14! yield S5 r̂28Tr(, which means that the initia

stater̂1 of the first TLA transfers into the final state, which
not entangled with the stater̂285U2r̂2U2

† of the second TLA.

We can simplify Eq.~14! by considering a pure stater̂2,
so that together with an arbitrary choice of no-entanglem
transformationU it seems reasonable to consider a spe
case of the pure state:r2ab5dabdaa0

. Also keeping in mind

thatSkl,mn is linear on the density matrixr̂2 and the coheren
information I c is a convex function ofS @10#, Eq. ~14! sim-
plifies to

Skl,mn5(
m

Umm,ka0
Umn,la0

* , ~15!

which means that the quantum channel is described only
the unitary transformationU. Here the summation is take
over only the statesum& of the first TLA after the coupling
transformation.

The coherent information transmitted in systems of t
unitary coupled TLAs with r̂ in5 Î /2 and (r̂2)12

5A( r̂2)11@12( r̂2)11# is shown in Fig. 4. A convex function
of r̂2 is shown, which has the maximum on the border,r11

FIG. 4. The coherent information transmitted between two u
tary coupled TLAs versus populationr11 of the diagonal initial
density matrix of the second TLA and the coupling precession an
Vt.
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5( r̂2)1150,1. As in the case of a single TLA, the behavi
of the coherent information preserves the typical thresho
type dependency on the coupling angle, which determi
the degree of the coherent coupling of two TLAs with r
spect to the independent fluctuations of the second TLA.

B. Two TLAs coupled via the measuring procedure

Here we will discuss a specific type of quantum chan
connecting two TLAs@30#, where the superoperatorS is de-
fined by themeasuring procedure, which implements a dif-
ferent approach to the quantum information@31# calledmea-
sured information.

We start with a channel formed of two identical two-lev
systems. In terms of wave function, the correspondingfull
measurementtransformation of the first TLA state is define
as

c ^ w→( ai uf i&uf i&, ai5^f i uc&. ~16!

This transformation provides full entanglement of some ba
statesuf i&, which do not depend on the initial statew of the
second TLA. The latter serves as a measuring device,
fully preserves information on the basis states of the fi
system statec5(ai uf i&. Eq. ~16!, being a deterministic
transformation of the wave function, is neither a linear n
unitary transformation with respect tow and, therefore, can
not represent a true deterministic transformation. The co
sponding representation in terms of the two-TLA dens
matrices has the form

r̂12→(
i

(
j

Šf i z^f j ur̂12uf j& zf i‹uf i&uf i&^f i u^f i u.

~17!

This representation is linear onr̂12 and satisfies the standar
conditions of physical feasibility@10,32#, i.e., completely
positive and trace preserving. This matrix is in the form
(pi uf i&uf i&^f i u^f i u, so that S( r̂12)5S( r̂2). Due to the
classical nature of the information represented here only w
the classical indexesi and in accordance with the equation
of Sec. II, the single-instant coherent information is zero.

In the case of a two-time channel, the superoperator
the quantum channel connecting two TLAs can be read
derived from Eq.~2! with ŝkl5ufk&^fkudkl , ^ku→^fku, and
uk&→ufk&. After calculating the trace over the first TLA an
replacingr̂12 with the substitution symbol(, the equation
takes the form

M5(
k

P̂kTr1êk(. ~18!

Here P̂k5ufk&^fku are the orthogonal projectors represe
ing the eigenstates of the ‘‘pointer’’ variable of the seco
TLA and Êk5ufk&^fku is the orthogonal expansion of th
unit ~orthogonal map! formed of the same projectors. Th
orthogonal map determines here the quantum-to-classica

i-

le
3-6
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COHERENT INFORMATION ANALYSIS OF QUANTUM . . . PHYSICAL REVIEW A62 032303
duction transformation Tr1Êk(5^fku(ufk&, which repre-
sents the procedure of getting classical informationk from
the first system. Applying the transformation~18! to r̂ in and
using Eq.~6! for the respective output and input-output de
sity matrices, we get

r̂out5(
k

p̃kufk&^fku, r̂a5(
k

p̃kufk&upk&^pku^fku,

~19!

wherep̃k5^fkur̂ inufk&5( i pi z^fku i & z2 are the eigenvalues o

the reduced density matrix andupk&5( iApi / p̃k^fku i &u ī &
are the normalized modified input states coupled with
output statesufk& after the measurement procedure. It is im
portant to note@as it follows from Eq.~19!# that there is no
coherent information in the system because vectorsufk& are
orthogonal and therefore the entropies of the density ma
ces ~19! are obviously the same. Conversely, the measu
information introduced in@31# is not equal to zero in this
case.

We can easily generalize our result for a more gene
case of the quantum channel, when the second system
different structure from the first and, therefore, they occu
different Hilbert spaces. This difference leads to the repla
ment of the basis statesuf i& of the second system in ou
previous results with another orthogonal setuw i&5Vuf i&,
whereV is an isometric transformation from the Hilbert sta
H1 of the first system to the different Hilbert spaceH2 of the
second system. After simple straightforward calculations,
final result is the same—there is no coherent informat
transmitted through the quantum channel. This result i
natural feature of coherent information, in contrast to ot
information approaches~see, for example, Ref.@31#!.

It is interesting to discuss more general measuring-t
transformations, for instance, the indirect~generalized! mea-
surement procedure. This procedure was first applied to
problems of optimal quantum detection and measuremen
@33# and then, in a form of nonorthogonal expansion of u
Ê(dl), in @34# @ Ê(dl) is equivalent to the positive operato
valued measure~POVM!, used in the semiclassical versio
of quantum information and measurement theo
@11,35,36##. This indirect measuring transformation resu
from averaging a direct measuring transformation appli
not to the system of interest, but to its combination with
auxiliary independent system. The indirect-measurement
peroperator in the general form can be written as

M5(
q

P̂qTr Êq(, ~20!

whereP̂q are the arbitrary orthogonal projectors andÊq is the
general-type nonorthogonal expansion of the unit inH space
~POVM!. Note thatÊq5uwq&^wqu is a specific ‘‘pure’’ type
of POVM, first used in quantum detection and estimat
theory @33#. The latter describes the full measurement inH
^ Ha for the singular choice of the initial auxiliary syste
density matrixrbc

a 5db0dbc .
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The information transfer from the initial density matrix t
the final output state is represented in Eq.~20! via the cou-
pling provided by indexesq. Because the numberNq of q
values can be greater than DimH, it seems reasonable t
suggest that some output coherent information is left ab
the input state. The corresponding output and input-out
density matrices are given by

r̂out5(
q

p̃qP̂q , r̂a5(
qi j

Apipj^ j uÊqu i &P̂q^ u ī &^ j̄ u,

~21!

where p̃q5Tr Êqr̂ in are the state probabilities given by th
indirect measurement.

In the case of full indirect measurement, it can be eas
inferred theoretically or confirmed by numerical calculatio
for particular examples that no coherent information is av
able. The proof is based on the quantum analog@7# of the
classical data processing theorem and the above discu
result on a full direct measurement. Therefore, in order to
nonzero coherent information, a class of incomplete~soft!
measurements must be implemented, which are subjec
more detailed quantum information analysis.

C. Quantum duplication procedure

In Sec. V B, we demonstrated that the classical-type m
suring procedure defined by the transformation~17! com-
pletely destroys the coherent information transmitted throu
the quantum channel. Here we will consider a modifi
transformation for the quantum channel shown in Fig. 1~c!,
which preserves the coherent information,

r̂12→ r̂128 5(
i j

^f i uTr2r̂12uf j&uf i&uf i&^f j u^f j u.

In this equation off-diagonal matrix elements of the inp
density matrixr̂15 r̂ in are taken into account, which pre
serves the phase connections between differentf i .

For the initial density matrix of a product typer̂ in^ r̂2, in
terms ofr̂ in→ r̂128 transformation fromH to H ^ H, the cor-
responding superoperator has the form

Q5(
i j

uf i&uf i&^f j u^f j u^f i u(uf j&. ~22!

This superoperator defines the coherent measuring tran
mation, in contrast to the incoherent transformation d
cussed in@31#. The coherent measuring transformation co
verts r̂ in into a r̂2-independent state

r̂out5r128 5(
i j

^f i ur̂ inuf j&uf i&uf i&^f j u^f j u, ~23!

which results in the duplication of the input eigenstatesf i

into the same states of the pointer variablek̂5(kkufk&^fku.
Pure states of the input are transformed into the pure state
the joint (112) system by doubling the pointer states
3-7



r
is
o
si

.

an

r
s
ic

,

n
g
g

th
su
as

s
e
es

en

a

ld
th

s-

he
he
fic

the

xes,
ho-
ele-
eld

-

and

the
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c→(
i

^f i uc&uf i&uf i&.

This mapping is similar to the mapping given by Eq.~16!. Of
course, only the input statesc equal to the chosen pointe
basis statesfk are duplicated without distortion because it
impossible to transmit nonorthogonal states using only
thogonal ones. The entropy of the output state with a den
matrix ~23! having the same matrix elements asr̂ in is evi-
dently the same as the input state,Sout5Sin5S@ r̂ in#, due to
the preservation of the coherence of all pure input states

For the joint input-output states, the transformation~22!
yields the corresponding density matrix~6! in H ^ H ^ H
space,

r̂a5(
kl

ufk&ufk&^f l u^f l u ^Ap̃kp̃l uxk&^x l u, ~24!

where p̃k , uxk& are the same as above, providing an exp
sion of the input density matrix in the formr̂ in

5(kp̃kuxk&^xku. Taking into account that the first tenso
product term in Eq.~24! is a set of transition projector
P̂kl ,P̂klP̂mn5d lmP̂kn , we can apply easily proven algebra
rules valid for a scalar functionf:

f S (
kl

P̂kl ^ R̂klD 5(
kl

P̂kl ^ f ~R̂!kl ,

where R̂5(R̂kl) is the block matrix and Trf ((klP̂kl ^ R̂kl)

5Tr f (R̂). Here R̂5(Ap̃kp̃l uxk&^x l u), and it is simply

uux&&^^xuu† with uux&&ki5Ap̃kxki , a vector in theH ^ H
space. All eigenvalueslk of this matrix are equal to zero
except one value corresponding to the eigenvectoruux&&.

Calculation of the exchange entropy givesSe50, and,
therefore, I c5Sin . Consequently, the coherent duplicatio
does not reduce the input information transmitted throu
the 1→(112) channel, nor does it matter whether the re
ister k̂ is compatible with the input density matrix,@ k̂,r̂ in#
50, or not.

If the channel is reduced to the one shown in Fig. 1~b! and
discussed in Sec. V B, by taking in Eq.~23! trace either over
the first or the second system, we evidently come to
measurement procedure discussed in Sec. V B. As a re
we can conclude that the coherent information is strictly
sociated with the joint system but not with its subsystem
This natural property could be used in quantum error corr
tion algorithms@37# or for producing stable entangled stat
@38#.

D. TLA-to-vacuum field channel

In this section we analyze the quantum channel betwe
TLA and a vacuum electromagnetic field@Fig. 1~b!#, which
is an extension of the TLA in an external laser field,
considered in Sec. III.

For this analysis, we will use a reduced model of the fie
which is based on the reduction of the Hilbert space of
03230
r-
ty

-

h
-

e
lt,
-
.

c-

a

s

,
e

field in the Fock representation~Fig. 5!. The problem, there-
fore, is reduced to that of the interaction of a two-level sy
tem with continuous multimode oscillator systems@39#, a
specific case of which is the interaction of an atom with t
free photon field. However, to analyze the information in t
system~atom1field!, we do not need to consider the speci
dependence of the wave functionc0(k,l) of the field photon
on the wave vector~including polarization!, because only its
total probability and phase are significant.

In the basis of the free atomic and field states for
vacuum’s initial statea050, we get from Eq.~15!

Skl,mn5(
m

Umm,k0Umn,l0* .

Greek letters are used to distinguish the photon field inde
which in the general case include both the number of p
tons and their space or momentum coordinates. Matrix
ments of this superoperator calculated via the atom-to-fi
unitary evolution matrixUmm,k0 coefficients~Table I! are
shown in Table II.

The choice ofc0(k,l) as a basis for the photon field@40#
reduces the matrix of operatorSkl,mn to the nonoperator ma
trix transformation, which in terms ofŝkl matrices has the
form

FIG. 5. Structure of the joint Hilbert space of the~atom1field!
system. For the vacuum initial field state, both atomic states
only two Fock states of the field (u0& and u1&) are involved in the
dynamics of the joint system~atom1field!. The dynamics is en-
tirely defined by just two states,u0&au1&kl and u1&au0&, which are
described byc0(k,l) andc1, respectively.

TABLE I. Unitary ~atom1field! to ~atom1field! transformation
Umm,ka for the vacuum initial photon-field state, where indexesm,k
stand for atomic quanta andm,a—for the number of photons. The
long-dashed symbol stays for the elements not involved into
calculated termsSkl,mn ~Table II!.

mm
ka

00 01 10 11

00 1 0 0 0
01 — — — —
10 0 c0(k,l) c1 0
11 — — — —
3-8
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FIG. 6. The coherent informa
tion transmitted in the atom-to
field quantum channel versus th
dimensionless timegt and input
atomic density matrix, which is
taken either diagonal with the
ground-state matrix elementr11

~a! or as the sum ofÎ /2 and the
real ~‘‘cosine-type’’! coherent
contribution of the off-diagonal

elementsr12ŝ1 ~b!.
e
nd

or
d

t
evel

the
ŝ115S 1 0

0 0D , ŝ125S 0 ~12e2gt!1/2

0 0 D ,

ŝ215S 0 0

~12e2gt!1/2 0D , ŝ225S e2gt 0

0 12e2gtD ,

~25!

whereuc1u25exp(2gt) describes the population decay of th
totally populated initial excited state of the atom a
*(uc0(k,l)u2dk512exp(2gt) is the probability a photon
will be detected. From Eq.~25!, it follows that the structure
of the photon field plays no role, and the transmitted inf
mation defined by the input-output density matrix depen
only on the photon emission probability by timet. The re-
duction of the photon field~only the photon numbersm,n
te
te
e
e

03230
-
s

50,1 were taken into account! leads to the conclusion tha
the photon states also are equivalent to those of a two-l
system.

Applying the transformation~25! to the input atom den-
sity matrix

r̂ in5S r11 r12

r12 12r11
D ,

restricted to the real off-diagonal matrix elements, we get
output density matrix

r̂out5S r111r22e
2gt r12~12e2gt!1/2

r12~12e2gt!1/2 r22~12e2gt!
D

and forr1250 the respective input-output density matrix
r̂a5S r11 0 0 @r11r22~12e2gt!#1/2

0 r22e
2gt 0 0

0 0 0 0

@r11r22~12e2gt!#1/2 0 0 r22~12e2gt!

D .
s at

or
bili-
s.
he
For t→` this expression yields a pure atom-photon sta
which converts incoherent fluctuations of the atomic sta
forming the incoherent ensemble, to equivalent coher
fluctuations of the photon states. The corresponding eig

TABLE II. Atom-to-field transformationSkl,mn , which defines
uk&^ l u→um&^nu superoperator transformation. Indexesk,l stand for
atomic quanta andm,n—for the number of photons.

mn
kl

00 01 10 11

00 1 0 0 0
01 0 0 c0(k,l) 0
10 0 c0

1(k,l) 0 0
11 uc1u2 0 0 c0(k,l)c0

1(k8,l8)
,
s,
nt
n-

values arela5$0,0,12r22exp(2gt),r22exp(2gt)%. Nonzero
values are equal to the probabilities of the atomic state
time t. For the output~photon! density matrixr̂out the eigen-
values arelout5$r22@12exp(2gt)#,12r22@12exp(2gt)#%,
which are the probability that a photon will be emitted
not. These sets of eigenvalues determine the eigenproba
ties of the joint input-output and marginal output matrice
The coherent information, defined by the difference of t
corresponding entropies, then takes the form

I c5xr22log2~xr22!2~12r221xr22!log2@12~12x!r22#

1~12xr22!log2~12xr22!2~12x!r22log2~r222xr22!,

~26!

wherex5exp(2gt). This formula is valid forI c.0, other-
3-9
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B. A. GRISHANIN AND V. N. ZADKOV PHYSICAL REVIEW A 62 032303
wise, I c50. The corresponding critical point is exp(2gt)
51/2, the time when the probability 12r22@12exp(2gt)# of
finding no photon is equal to the population of the low
atomic state 12r22exp(2gt).

The results for calculating the coherent information a
shown in Fig. 6 for two specific cases:r1250 @Fig. 6~a!# and
r1151/2, 0<r12<1/2 @Fig. 6~b!#. One can see from Fig
6~a! that the coherent information is symmetrical with r
spect to the populationr11 around the symmetry pointr11
51/2. Increasing the excited-state populationr22512r11
and the corresponding photon emission yield does not
crease the coherent information, because of the reductio
the source entropy, which determines the potential maxim
value of the coherent information. For the same reason,
coherent information decreases when there is a nonzero
herent contribution to the initial maximum entropy ato
state and completely vanishes for the pure coherent in
state@Fig. 6~b!#.

In accordance with Sec. II and because of the purity of
initial field state, one-time information is equal to the diffe
ence of the entropies of the photon field only, represented
r̂out, and the initial atomic state, represented byr̂ in . For a
pure initial state, expressed in the form of the excited at
stateu2&, and for 0,t,`, we always get nonzero informa
tion I c52x log2x2(12x)log2(12x) that yields 1 qubit for
x51/2, when the excited state population is equal to
probability a photon will be emitted.

E. The transmission of coherent information between two
atoms via a free-space field

In this section we will consider the quantum chann
when information is transmitted from one atom to anoth
via the free-space field@Fig. 1~b!#. Suppose that the secon
atom is initially in the ground state. In addition, we w
restrict ourselves here to the long time scale approximat
in which the effects of the discrete nature of the retard
electromagnetic interaction are neglected@41–44#. Under
such restrictions and approximations we have the Di
problem @45#, for which the well-known solution for the
atomic state in the form of two decaying symmetric a
antisymmetric Dicke statesus&5(u1&u2&1u2&u1&)/A2, ua&
5(u1&u2&2u2&u1&)/A2 and the stable vacuum stateu0&
5u1&u1& can be written as

cs~ t !5cs~0!exp@2~gs/21 iL!t#,

ca~ t !5ca~0!exp@2~ga/22 iL!t#,

c0~ t !5c0~0!1@cs~0!21ca~0!22cs~ t !22ca~ t !2#1/2ei j(t).
~27!

Herec0(t) is the amplitude of the stable vacuum compon
u1&u1&, which has an incoherent contribution due to the sp
taneous radiation transitions from the excited two-atom
states,j(t) is the homogeneously distributed random pha
gs,a and L are their decay rate and coupling shift, respe
tively, andcs,a are the amplitudes of the Dicke states.
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In terms of the products of the individual atomic stat
u i &u j & for the corresponding initial amplitudesc12(0)50,
c22(0)50 the system’s dynamics is described, according
the Dicke dynamics~27!, by the following equations:

c11~ t !5c11~0!1 f ~ t !ei j(t)c21~0!, c21~ t !5 f s~ t !c21~0!,

c12~ t !5 f a~ t !c12~0!, c22~ t !50,

f ~ t !5$12@exp~2gst !1exp~2gat !#/2%1/2,

f s~ t !5$exp@2~gs/21 iL!t#1exp@2~ga/22 iL!t#%/2,

f a~ t !5$exp@2~gs/21 iL!t#2exp@2~ga/22 iL!t#%/2.

Applying these formulas to the input operato
ck1(0)cl1* (0)uk&^ l u of the first atom and then averaging th
output over the final states of the first atom and the fi
fluctuations@the latter is represented here only withj(t)#, we
get the symbolic channel superoperator transforma
r̂ (1)(0)→ r̂ (2)(t)5S(t) r̂ (1)(0) and correspondingŝkl opera-
tors in the form

S~ t !5u1&^1u(u1&^1u1@ f ~ t !21u f s~ t !u2#u1&^2u(u2&

3^1u1u f a~ t !u2u2&^2u(u2&^2u1 f a~ t !u2&^2u(u1&

3^1u1 f a* ~ t !u1&^1u(u2&^2u,

ŝ115S 1 0

0 0D , ŝ125S 0 f a* ~ t !

0 0
D ,

ŝ215S 0 0

f a~ t ! 0D , ŝ225S f ~ t !21u f s~ t !u2 0

0 u f a~ t !u2D .

~28!

To further elucidate this problem, let us now discuss
case of two identical atoms having parallel dipole mome
aligned perpendicular to the vector connecting the ato
Here only two-dimensionless parameters are essential:
mensionless timegt, whereg is the free atom’s decay rate
and dimensionless distance,w5k0R, whereR is the inter-
atomic distance andk0 is the wave vector at the atomic fre
quency. Then, the dimensionless two-atomic decay rates
the short distance dipole-dipole shift are given by@29,38,44#

gs,a /g516g and L/g5~3/4!/w3,

respectively, withg5(3/2)(w21sinw1w22cosw2w23sinw).
The coherent information may be calculated as previou

described in Sec. V D by replacing exp(2gt) with f (t)2

1u f s(t)u2 in Eq. ~25!. Then, the operatorsŝkl in Eq. ~25!
become similar to the corresponding operators in Eq.~28!.
The coherent information is given by the same Eq.~26! with
x5 f (t)21u f s(t)u2, which, however, now has~in contrast to
a single-atom case considered in V D! new qualitative fea-
tures arising from the specific oscillatory dependence
u f s,a(t)u2 on the interatomic distancew.

If there were no oscillations from the quasielectrosta
dipole-dipole coupling, i.e., as in the case ofL50, the co-
3-10
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FIG. 7. Excited-state popula
tion of the second atom~a! and
the coherent information~b! in a
system of two atoms interacting
via the free-space field versu
time gt and the interatomic dis-
tancew5v0R/c ~both are dimen-
sionless!. The input density matrix
is diagonal with the ground-stat
matrix elementr2251/2.
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herent information would always be equal to zero, beca
the thresholdx,0.5 would not be achieved. Parameter
2x) corresponds to the population of the excited state of
second atom for the initial stateu2& of the first atom, and for
the optimal valuer2251/2 of its initial population~from the
information point of view!, we have 12x<1/4 andx>3/4.
Oscillations inu f a(t)u2 lead to the interference between th
two decaying Dicke components, so that the maximum of
populationn2512x goes to the larger values, maximally u
to n251, and the coherent information becomes a nonz
value.

Functionsn2(w,gt) and I c(w,gt), calculated with Eq.
~26!, are shown in Fig. 7. For the considered geometry, t
serve as the universal measures for a system of two at
independent of their frequency or dipole moments.

As can be seen from Fig. 7~a!, the population decrease
rapidly versus time because of the decay of the short-li
Dicke component. Both the population and the coherent
formation @Fig. 7~b!# show strong oscillations at smaller in
teratomic distancesw. At w→0 the long-lived Dicke state
yields an essential population even at infinitely long tim
but it does not yield any coherent information after the to
decay of the other short-lived Dicke state.

VI. CONCLUSIONS

In this paper we have shown that the coherent-informa
concept can be used effectively to quantify the interact
between two real quantum systems, which in the gen
case may have essentially different Hilbert spaces, an
elucidate the role of quantum coherence specific for the j
system.

For a TLA in a resonant laser field, coherent informati
in the system does not increase as the intensity of the e
nal field increases, unless the external field modifies the
laxation parameters.
f

i-
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As an example of information transmission between
subsystems of a whole system, the hydrogen atom was
sidered. The coherent information in the atom was shown
transfer from the forbidden atomic transition to the dipo
active transition in an external electric field, due to coupli
through Stark splitting.

For two unitary coupled TLAs, the maximum valueI c
51 qubit of the coherent information was shown to
achieved for a complete unitary entanglement of two TL
andI c50, for any kind of measuring procedure discussed
Sec. V B.

For the information exchange between a TLA and a fr
space vacuum photon field via spontaneous emission,
coherent information was shown to reach a nonzero valu
the threshold point of the decay exponent exp(2gt) equal to
1/2, when the probability of finding no photon is equal to t
population of the lower atomic state. At its maximum, t
coherent information can reach the value ofI c51 qubit.

For the information transfer between two atoms v
vacuum field, when the atoms are located at a distance o
order of their transition wavelength, the coherent informat
was shown to be a nonzero value, only because of the co
ent oscillations of the Dicke states, which originate from t
dipole-to-dipole short distance electrostaticlike;1/R3 inter-
action. In contrast, the semiclassical information receiv
from the quantum detection procedure results from the po
lation correlations@38#.
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