Theoretical study of atoms dynamics in optical dipole trap
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ABSTRACT

Theoretical study and computer simulation results for stochastic dynamics of two atoms trapped in an optical dipole
trap under action of a probe resonant radiation are presented. The radiation force correlations resulting from our
model lead, in addition to cold collisions, to a tendency for atoms escape in pairs from the trap.

1. INTRODUCTION

Cold collisions between atoms in an atomic trap (magneto-optical trap or optical dipole trap) are thought to be
one of the key mechanisms for atomic losses from the trap.! As it has been recently shown experimentally, this
mechanism could result to a tendency for atoms escape in pairs (Fig. 1).2® At the same time, another fundamental
mechanism, long-range resonant dipole-dipole interactions (long-distance RDDI), also results in correlations between
interacting atoms and therefore to the same tendency for atoms escape in pairs.* In this paper, we discuss this second
mechanism.
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Figure 1. Excerpt from a typical fluorescence signal from a magneto-optical trap observed with an avalanche
photodiode. Five isolated cold collisions (two-atoms losses) are indicated by arrows. (Picture is taken from Ref. 1.)

In our model, we consider dynamics of atoms in a red-detuned optical dipole trap.>~” To clarify a role of long-
distance RDDI correlations we shine the atoms additionally by a probe (weak) resonant laser filed. This additional
field enhances significantly interactions between atoms via jointly emitted photons and reveals in increasing cor-
relations of stochastic radiation forces acting on atoms. For simulation of atomic dynamics we use quasiclassical
approximation for the emission radiation force.

In computer simulation, we analyze the atomic dynamics in the trap and the corresponding atomic losses by
varying the frequency detuning of the probe laser field and its intensity.
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Figure 2. Scheme of a standing-wave optical dipole trap (a) and potential energy of the trap in radial and axial
directions (b). The potential surface shows a regular pattern of micropotential holes.

2. MODEL OF OPTICAL DIPOLE TRAP

An optical dipole trap for neutral atoms can be made of a tightly focused powerful laser beam frequency of which is
far-detuned from the working transition of trapped atoms. One can then easily show that interaction of the induced
dipole moments of atoms in the trap with the inhomogeneous electric field along the beam profile lead to the restoring
force, which “traps” the atoms inside the beam.5 Surely, the described trapping mechanism works only for atoms
with low energies (at temperatures of about mK) because the potential of the dipole trap is shallow. Therefore,
atoms should be cooled down, for example in a magneto-optical trap, before loading into the optical dipole trap.3:7

In an experiment, for controlling positions of atoms in the trap it could be advantageous to keep single atoms
in micropotential holes. Such a regular pattern of micropotential holes in the optical dipole trap potential can be
formed with the use of counter-propagating laser beams, which form necessary structure due to the interferience. A
scheme of a standing-wave optical dipole trap formed with the counter-propagating laser beams is shown in Fig. 2a.
It uses only one laser beam, which interferes with the beam reflected from the mirror that preserves the wave front
and the polarization.® The potential of the trap is shown in Fig. 2b.

Parameters of the optical dipole trap we used in our model for numerical simulations have been taken similar to
the parameters of the experimental setup of Refs. 6,7 Namely, we consider the optical dipole trap formed by focusing
2.5 W Nd:YAG laser beam (1.063 pm) with linear polarization along z-axis into an area with diameter of about
5 pm. Cesium atoms trapped in the optical dipole trap we assume two-level atoms with the lifetime of the excited
state 1/v = 3.07 x 10~ s and the dipole moment of the working transition d = 8.01 x 1078 CGSE. Frequencies of
atomic oscillations in radial and axial directions are equal to w, ~ 60 kHz and w, ~ 1.5 MHz, respectively.

In the following, we will consider the red-detuned optical dipole trap configuration. Such a trap is formed by a
laser beam tuned far below the atomic resonance frequency. We will also assume that the laser beam with power P
forming the trap has the Gaussian intensity profile:

2

I(r,2) = a%exp (_2?1)2_(»2)) cos®(kz), (1)

where r is the radial coordinate and the half-waist beam diameter w(z) depends on the axial coordinate z as

w(z) = woy[1+ (1)2. (2)

%R

Here wy is the beam waist diameter and zg = mw3 /) is the Rayleigh length.

As we mentioned earlier, the thermal energy kpT of the atomic ensemble should be much smaller than the
potential depth of the trap and, therefore, movement of the trapped atoms in radial direction is reasonably small
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compared to the beam waist diameter and in the axial direction movement of atoms is smaller than the Rayleigh
length. In this case, the optical potential of the trap can be approximated as:®

Udip(r, 2) = —Up cos?(kz) [1 —2 (wioy - (i)z] . 3)

The oscillation frequencies of the trapped atoms are equal to w, = (4Up/mw3)*/?

k(2Up/m)'/? in axial direction, so that the potential energy reads then as

in radial direction and w, =

. _(ng —na)mwc?y [ 2 1
Uaip(r, 2) = 258 A, + A, I(r,2), 4)

where (n; — n2) is the difference between population of the low and upper atom levels, Ay = w(*P3 /2 —-28, /2) and
Ay = w(*Py/3 %8, 2) are the transition frequencies.

3. MODEL FOR THE LONG-RANGE RESONANT DIPOLE-DIPOLE INTERACTIONS

We assume that interaction of atoms trapped in the trap is the long-range RDDI, which is governed by stochastic
process that leads, in its turn, to a stochastic radiation force between atoms. Then, we suppose that the laser detuning
A < wp and atoms are located at a distance of the order of laser wavelength, Ri2 2 A. With these assumptions,
we can calculate the spectrum of atomic radiation force, keeping in mind that the dipole radiation of atoms for this
purpose can be approximated with a white noise. Spectra N1; and Na; of the interaction force fluctuations between
two atoms are equal and spectrum of single atom fluctuations takes the form:

hwdd?

Ni1 = Noy = ﬁ(AU{AO’T}Iﬂ, (5)
hwld? _

Ny =Ny = 27:_)05 (Aoy Aot o, (6)

where d = (3h031"/4w3)1/ ? is the transition dipole moment and &4 are the atomic transition operators. For the case
of dipole moments parallel to each other and orthogonal to the vector of displacement we have

L 0 0 £ 0 o0
Ly=n| 0 L 0 |, In=7| O 20|, (7
0 0 I3 o 0
where
i 4(9 — ¢pls) cospra  4(9 — dpi,) sin iy ®)
Pl ol ’
L = 4(3 — p1,) cos 12 _ 4(3 - 2¢},) sin g1y )
Py %
;o= —i12- 3ply) cospra | 4(9 = 120, + i) sin g1z (10)
Pl o ’
(Ao7 Acy) is the correlation function of the transition operator that reads
—4g41* (1 + 462
(Aoy Act) = 99z, (1 +45°) (11)

[(1+9)% +4(52 + 82) + 4(1 + 9)28% + 4(g.> +262)%]*

Here g1, = g1 /T is the dimensionless Rabi frequency, g, = Ed/F is the Rabi frequency, § = A/T is the dimensionless
laser detuning, and

3 p12€OS P12 — sin 1z + F, sin iz

2 ‘P?z (12)
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The correlation function for fluctuations of a single atom in the trap, (Ao Aoj), can be written as

2g1* [1+2(gz% + 6%)% + g2(1 + 46?)]

(Aoy Acy) = 2"
[(1+9)2 +4(g1° + 62) + 4(1 + 9)262 + 4(§3 + 262)?)

(13)

To clarify the role of the long-range RDDI we suggest to shine atoms in the optical dipole trap with an additional
weak laser field tuned into the resonance with the atomic transition. This will increase the RDDI between atoms
and, therefore, lead to the increase in fluctuation amplitude of each atom in the trap. Varying the laser detuning ¢
of the weak laser field and its intensity we can control the radiation force between atoms.

4. MODELING OF ATOMS DYNAMICS IN THE TRAP

Motion of atoms in the trap is governed by the following equation:

BU({C)
mi®) = — =% L PO+ Fidpy, k=12, (14)

coo

g;?:)l is the cooling force (linear friction),

and Fg%m is the fluctuation force due to the RDDI. The cooling force can be written as®

where index k¥ numbers the atoms in the trap, Uqip, is the trapping potential, F

Feool = —mar,, (15)

where
2hw? I 26/70

T T me L1+ (26/%0)72

I is the intensity of the weak laser field used to enhance the RDDI interactions in the trap, and Iy is the saturation
intensity of the atomic transition.

The fluctuation force Frppr can be modeled with a white noise because the correlation time, determined by the
radiation decay rates, is small in comparison with all other time scales of atom’s dynamics in the trap. The joint
correlation matrix for the fluctuating force Frppr has the form:

N —Np )
N =
( =Ni2 Nu )’

where N1; and Nj, are determined by Egs. (5), (6). In accordance with Eq. (7), the only correlated projections in
this matrix are because of the N12 matrix element. The corresponding correlated pair of random values z;, z2 can

be determined then as
o = \/6(N11 + Nn)51 B \/6(N11 — Ni2)

At A
_[6(N11 + Ni2) \/6(N11—N12)

where At is the time step in the course of computer simulation. Here &;, & are the independent random variables
uniformly distributed in the range (—1/2,1/2), so that we can simply replace z; At with the integral [,, z(t)dt, which
gives us correct dispersion N At for the white noise.
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Figure 3. The RDDI force between atoms versus interatomic distance (in wave lengths) for different values of the
dimensionless Rabi frequency gz, (a) and laser detuning § (b).

5. COMPUTER SIMULATION RESULTS

In computer experiment, we analyze the role of interaction of atoms within large distances controlling the dynamics
of atoms in the trap, which depends on the intensity and detuning of the probe laser beam. Influence of a buffer gas
and cold collisions with the buffer gas atoms in the trap have not been taken into account in our model—we plan
to do that next. We can neglect cold collisions between atoms trapped in the micropotential minima of the optical
lattice in the trap.t?

We will start discussion of computer simulation results for atoms dynamics in the trap with the RDDI force acting
between atoms. Its oscillating dependency on the distance between atoms is shown in Fig. 3. The atoms in the trap
are trapped in the micropotential minima of the optical lattice with the period of \/2, where A is the wavelength
of the laser beam forming the optical dipole trap (and the lattice). As it follows from Fig. 3, the RDDI force for
atoms strictly located in the micropotential minima positions is equal to zero. This means that the RDDI interaction
between trapped atoms is only due to the atoms fluctuations (oscillations) around their equilibrium positions in the
micropotential minima. Also, the effective RDDI force amplitude decreases with increasing the interatomic distance.

Modeling the trajectory of atoms in the trap with the use of Eq. (14) we set initial coordinates of the atoms as
random deviations from the equilibrium positions in the minima of the micropotentials and their initial velocities
distributed according to the Maxwell distribution. The latter depends on the temperature of atoms, which we set
equal to the experimental value of 40 uK (see Ref. 6,7). At this temperature atoms are localized in the micropotential
minima for quite a long time.

It is also necessary to estimate if the probe laser beam shining the atoms in the trap could kink them out of the
micropotential minima. For this we can estimate the energy, which is transferred to an atom by a photon from the
probe laser beam, that reads

2
E=%:2x10—2x (16)

This number does not exceed the depth of a potential hole of the trap in the center of the beam and, therefore,
the photons from the probe laser beam will not kink the atoms out from the micropotential minima with the 100%
probability after a single photon emission. This enables us to use in our calculations a diffusion approach for the
process of atoms radiation escape.

Spectra of fluctuations of atoms in the micropotentials of the optical lattice are shown in Fig. 4. The one-atom
spectrum is essentially enriched for the case of two interacting atoms with respect to the case of a single atom,
especially in the low frequency region. This means, that the correlation between two Fg%m forces (k = 1,2) in
Eq. (14), which is the only mechanism coupling the atoms, plays an essential role in atoms stochastic dynamics.
If there is no correlation (g = 0), the dynamics of every atom is independent from each other and corresponding
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Figure 4. Spectra of fluctuations of a single atom (a) and one of the two atoms in the trap (b) along z-axis.
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Figure 5. a) Temporal dependence of the axial coordinate of a single atom (solid line) and two atoms in the trap
(dotted and dashed lines for each atom, respectively) with the same initial conditions. b) Temporal dependence of
the axial projection R;s of the distance between two atoms in the optical dipole trap.

spectrum is shown in Fig. 4a. Having fluctuation forces depending on both atoms coordinates (see Egs. (6), (11)), we
get an essential modifications of their dynamics. Interaction via common photons emitted by the two atoms provides
both correlation of their dynamics and its modification. Actually, the effect of a correlated escape of atoms in pairs
from the trap shown in Fig. 5 can be associated with the nonzero fluctuation spectrum intensity at zero frequency,
keeping in mind that the latter can correspond to the presence of zero center-of-mass velocity contribution in the
total spectrum of an atom.

Fluctuations of a single atom also lead to the escaping of atom from the trap. That is why for the studying
of fluctuation power of interaction between atoms it is necessary to compare the dynamics of two atoms with the
dynamics of single atom with the same initial conditions. As a result, we can determine how one atom affects the
dynamics of another atom. For this purpose, we model the dynamics of a single atom and two atoms in the trap
with the same initial conditions and with the same fluctuation statistics of a single atom (Fig. 5). Analyzing atoms
dynamics in the trap, we can see that both atoms leave the trap simultaneously (Fig. 5a).

Simulating the dynamics of two atoms in the trap we can quantitatively and qualitatively compare the trajectories
of a sing!z atom and one of the two atoms in the trap at any moment of time. This enables us to analyze the interaction
between atoms long before the atoms escape from the trap. Analyzing, for example, temporal dependency of total
energy of a single atom and one of the two atoms in the trap (Fig. 6) one can conclude that the increase of energy
of one of the two interacting via RDDI atoms in the trap by contrast with more or less a monotonous dependency of
a single atom in the trap is a sign of escaping atoms from the trap. Surely, decreasing time along which we observe
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Figure 6. Temporal dependency of total energy of a single atom (dotted line) and one of the two atoms (solid line)
in the trap. Initial conditions for the atoms are the same.

the atoms dynamics in a computer experiment, we decrease the accuracy of of our resulting conclusions. Therefore,
special efforts have been made in our computer simulations towards selection of optimal parameters, namely the
number of iterations in time, the time interval, an others.

6. CONCLUSIONS

In conclusion, theoretical study and computer simulation results for stochastic dynamics of two atoms trapped in an
optical dipole trap under the action of a probe resonant radiation are presented. It is shown that interaction of atoms
via common emitted photons reveals in an essential modification of the atoms dynamics. This modification leads
to the enriched spectrum of atoms fluctuation dynamics and pair-correlated radiative escape. The model discussed
here can be successfully used for analyzing atoms dynamics in optical dipole traps.
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